Metamath Proof Explorer


Theorem frr2

Description: Law of general well-founded recursion, part two. Now we establish the value of F within A . (Contributed by Scott Fenton, 11-Sep-2023)

Ref Expression
Hypothesis frr.1 F=frecsRAG
Assertion frr2 RFrARSeAXAFX=XGFPredRAX

Proof

Step Hyp Ref Expression
1 frr.1 F=frecsRAG
2 1 frr1 RFrARSeAFFnA
3 2 fndmd RFrARSeAdomF=A
4 3 eleq2d RFrARSeAXdomFXA
5 4 pm5.32i RFrARSeAXdomFRFrARSeAXA
6 fveq2 y=XFy=FX
7 id y=Xy=X
8 predeq3 y=XPredRAy=PredRAX
9 8 reseq2d y=XFPredRAy=FPredRAX
10 7 9 oveq12d y=XyGFPredRAy=XGFPredRAX
11 6 10 eqeq12d y=XFy=yGFPredRAyFX=XGFPredRAX
12 11 imbi2d y=XRFrARSeAFy=yGFPredRAyRFrARSeAFX=XGFPredRAX
13 eqid a|baFnbbAcbPredRAcbcbac=cGaPredRAc=a|baFnbbAcbPredRAcbcbac=cGaPredRAc
14 13 frrlem1 a|baFnbbAcbPredRAcbcbac=cGaPredRAc=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
15 14 1 frrlem15 RFrARSeAga|baFnbbAcbPredRAcbcbac=cGaPredRAcha|baFnbbAcbPredRAcbcbac=cGaPredRAcxguxhvu=v
16 14 1 15 frrlem10 RFrARSeAydomFFy=yGFPredRAy
17 16 expcom ydomFRFrARSeAFy=yGFPredRAy
18 12 17 vtoclga XdomFRFrARSeAFX=XGFPredRAX
19 18 impcom RFrARSeAXdomFFX=XGFPredRAX
20 5 19 sylbir RFrARSeAXAFX=XGFPredRAX