Step |
Hyp |
Ref |
Expression |
1 |
|
frrlem15.1 |
|
2 |
|
frrlem15.2 |
|
3 |
|
vex |
|
4 |
|
vex |
|
5 |
3 4
|
breldm |
|
6 |
5
|
adantr |
|
7 |
|
vex |
|
8 |
3 7
|
breldm |
|
9 |
8
|
adantl |
|
10 |
6 9
|
elind |
|
11 |
|
id |
|
12 |
4
|
brresi |
|
13 |
7
|
brresi |
|
14 |
12 13
|
anbi12i |
|
15 |
|
an4 |
|
16 |
14 15
|
bitri |
|
17 |
10 10 11 16
|
syl21anbrc |
|
18 |
|
inss1 |
|
19 |
1
|
frrlem3 |
|
20 |
18 19
|
sstrid |
|
21 |
20
|
ad2antrl |
|
22 |
|
simpll |
|
23 |
|
frss |
|
24 |
21 22 23
|
sylc |
|
25 |
|
simplr |
|
26 |
|
sess2 |
|
27 |
21 25 26
|
sylc |
|
28 |
1
|
frrlem4 |
|
29 |
28
|
adantl |
|
30 |
1
|
frrlem4 |
|
31 |
|
incom |
|
32 |
31
|
reseq2i |
|
33 |
|
fneq12 |
|
34 |
32 31 33
|
mp2an |
|
35 |
32
|
fveq1i |
|
36 |
|
predeq2 |
|
37 |
31 36
|
ax-mp |
|
38 |
32 37
|
reseq12i |
|
39 |
38
|
oveq2i |
|
40 |
35 39
|
eqeq12i |
|
41 |
31 40
|
raleqbii |
|
42 |
34 41
|
anbi12i |
|
43 |
30 42
|
sylibr |
|
44 |
43
|
ancoms |
|
45 |
44
|
adantl |
|
46 |
|
frr3g |
|
47 |
24 27 29 45 46
|
syl211anc |
|
48 |
47
|
breqd |
|
49 |
48
|
biimprd |
|
50 |
1
|
frrlem2 |
|
51 |
50
|
funresd |
|
52 |
51
|
ad2antrl |
|
53 |
|
dffun2 |
|
54 |
|
2sp |
|
55 |
54
|
sps |
|
56 |
53 55
|
simplbiim |
|
57 |
52 56
|
syl |
|
58 |
49 57
|
sylan2d |
|
59 |
17 58
|
syl5 |
|