Metamath Proof Explorer


Theorem frrlem15

Description: Lemma for general well-founded recursion. Two acceptable functions are compatible. (Contributed by Scott Fenton, 11-Sep-2023)

Ref Expression
Hypotheses frrlem15.1 B = f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y
frrlem15.2 F = frecs R A G
Assertion frrlem15 R Fr A R Se A g B h B x g u x h v u = v

Proof

Step Hyp Ref Expression
1 frrlem15.1 B = f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y
2 frrlem15.2 F = frecs R A G
3 vex x V
4 vex u V
5 3 4 breldm x g u x dom g
6 5 adantr x g u x h v x dom g
7 vex v V
8 3 7 breldm x h v x dom h
9 8 adantl x g u x h v x dom h
10 6 9 elind x g u x h v x dom g dom h
11 id x g u x h v x g u x h v
12 4 brresi x g dom g dom h u x dom g dom h x g u
13 7 brresi x h dom g dom h v x dom g dom h x h v
14 12 13 anbi12i x g dom g dom h u x h dom g dom h v x dom g dom h x g u x dom g dom h x h v
15 an4 x dom g dom h x g u x dom g dom h x h v x dom g dom h x dom g dom h x g u x h v
16 14 15 bitri x g dom g dom h u x h dom g dom h v x dom g dom h x dom g dom h x g u x h v
17 10 10 11 16 syl21anbrc x g u x h v x g dom g dom h u x h dom g dom h v
18 inss1 dom g dom h dom g
19 1 frrlem3 g B dom g A
20 18 19 sstrid g B dom g dom h A
21 20 ad2antrl R Fr A R Se A g B h B dom g dom h A
22 simpll R Fr A R Se A g B h B R Fr A
23 frss dom g dom h A R Fr A R Fr dom g dom h
24 21 22 23 sylc R Fr A R Se A g B h B R Fr dom g dom h
25 simplr R Fr A R Se A g B h B R Se A
26 sess2 dom g dom h A R Se A R Se dom g dom h
27 21 25 26 sylc R Fr A R Se A g B h B R Se dom g dom h
28 1 frrlem4 g B h B g dom g dom h Fn dom g dom h a dom g dom h g dom g dom h a = a G g dom g dom h Pred R dom g dom h a
29 28 adantl R Fr A R Se A g B h B g dom g dom h Fn dom g dom h a dom g dom h g dom g dom h a = a G g dom g dom h Pred R dom g dom h a
30 1 frrlem4 h B g B h dom h dom g Fn dom h dom g a dom h dom g h dom h dom g a = a G h dom h dom g Pred R dom h dom g a
31 incom dom g dom h = dom h dom g
32 31 reseq2i h dom g dom h = h dom h dom g
33 fneq12 h dom g dom h = h dom h dom g dom g dom h = dom h dom g h dom g dom h Fn dom g dom h h dom h dom g Fn dom h dom g
34 32 31 33 mp2an h dom g dom h Fn dom g dom h h dom h dom g Fn dom h dom g
35 32 fveq1i h dom g dom h a = h dom h dom g a
36 predeq2 dom g dom h = dom h dom g Pred R dom g dom h a = Pred R dom h dom g a
37 31 36 ax-mp Pred R dom g dom h a = Pred R dom h dom g a
38 32 37 reseq12i h dom g dom h Pred R dom g dom h a = h dom h dom g Pred R dom h dom g a
39 38 oveq2i a G h dom g dom h Pred R dom g dom h a = a G h dom h dom g Pred R dom h dom g a
40 35 39 eqeq12i h dom g dom h a = a G h dom g dom h Pred R dom g dom h a h dom h dom g a = a G h dom h dom g Pred R dom h dom g a
41 31 40 raleqbii a dom g dom h h dom g dom h a = a G h dom g dom h Pred R dom g dom h a a dom h dom g h dom h dom g a = a G h dom h dom g Pred R dom h dom g a
42 34 41 anbi12i h dom g dom h Fn dom g dom h a dom g dom h h dom g dom h a = a G h dom g dom h Pred R dom g dom h a h dom h dom g Fn dom h dom g a dom h dom g h dom h dom g a = a G h dom h dom g Pred R dom h dom g a
43 30 42 sylibr h B g B h dom g dom h Fn dom g dom h a dom g dom h h dom g dom h a = a G h dom g dom h Pred R dom g dom h a
44 43 ancoms g B h B h dom g dom h Fn dom g dom h a dom g dom h h dom g dom h a = a G h dom g dom h Pred R dom g dom h a
45 44 adantl R Fr A R Se A g B h B h dom g dom h Fn dom g dom h a dom g dom h h dom g dom h a = a G h dom g dom h Pred R dom g dom h a
46 frr3g R Fr dom g dom h R Se dom g dom h g dom g dom h Fn dom g dom h a dom g dom h g dom g dom h a = a G g dom g dom h Pred R dom g dom h a h dom g dom h Fn dom g dom h a dom g dom h h dom g dom h a = a G h dom g dom h Pred R dom g dom h a g dom g dom h = h dom g dom h
47 24 27 29 45 46 syl211anc R Fr A R Se A g B h B g dom g dom h = h dom g dom h
48 47 breqd R Fr A R Se A g B h B x g dom g dom h v x h dom g dom h v
49 48 biimprd R Fr A R Se A g B h B x h dom g dom h v x g dom g dom h v
50 1 frrlem2 g B Fun g
51 50 funresd g B Fun g dom g dom h
52 51 ad2antrl R Fr A R Se A g B h B Fun g dom g dom h
53 dffun2 Fun g dom g dom h Rel g dom g dom h x u v x g dom g dom h u x g dom g dom h v u = v
54 2sp u v x g dom g dom h u x g dom g dom h v u = v x g dom g dom h u x g dom g dom h v u = v
55 54 sps x u v x g dom g dom h u x g dom g dom h v u = v x g dom g dom h u x g dom g dom h v u = v
56 53 55 simplbiim Fun g dom g dom h x g dom g dom h u x g dom g dom h v u = v
57 52 56 syl R Fr A R Se A g B h B x g dom g dom h u x g dom g dom h v u = v
58 49 57 sylan2d R Fr A R Se A g B h B x g dom g dom h u x h dom g dom h v u = v
59 17 58 syl5 R Fr A R Se A g B h B x g u x h v u = v