Metamath Proof Explorer


Theorem frr3g

Description: Functions defined by well-founded recursion are identical up to relation, domain, and characteristic function. General version of frr3 . (Contributed by Scott Fenton, 10-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion frr3g RFrARSeAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyF=G

Proof

Step Hyp Ref Expression
1 ra4v wPredRAzFFnAGFnAyAFy=yHFPredRAyyAGy=yHGPredRAyFw=GwFFnAGFnAyAFy=yHFPredRAyyAGy=yHGPredRAywPredRAzFw=Gw
2 r19.26 yAFy=yHFPredRAyGy=yHGPredRAyyAFy=yHFPredRAyyAGy=yHGPredRAy
3 2 anbi2i FFnAGFnAyAFy=yHFPredRAyGy=yHGPredRAyFFnAGFnAyAFy=yHFPredRAyyAGy=yHGPredRAy
4 fveq2 y=zFy=Fz
5 id y=zy=z
6 predeq3 y=zPredRAy=PredRAz
7 6 reseq2d y=zFPredRAy=FPredRAz
8 5 7 oveq12d y=zyHFPredRAy=zHFPredRAz
9 4 8 eqeq12d y=zFy=yHFPredRAyFz=zHFPredRAz
10 fveq2 y=zGy=Gz
11 6 reseq2d y=zGPredRAy=GPredRAz
12 5 11 oveq12d y=zyHGPredRAy=zHGPredRAz
13 10 12 eqeq12d y=zGy=yHGPredRAyGz=zHGPredRAz
14 9 13 anbi12d y=zFy=yHFPredRAyGy=yHGPredRAyFz=zHFPredRAzGz=zHGPredRAz
15 14 rspcva zAyAFy=yHFPredRAyGy=yHGPredRAyFz=zHFPredRAzGz=zHGPredRAz
16 eqtr3 zHGPredRAz=zHFPredRAzFz=zHFPredRAzzHGPredRAz=Fz
17 16 eqcomd zHGPredRAz=zHFPredRAzFz=zHFPredRAzFz=zHGPredRAz
18 eqtr3 Fz=zHGPredRAzGz=zHGPredRAzFz=Gz
19 18 ex Fz=zHGPredRAzGz=zHGPredRAzFz=Gz
20 17 19 syl zHGPredRAz=zHFPredRAzFz=zHFPredRAzGz=zHGPredRAzFz=Gz
21 20 expimpd zHGPredRAz=zHFPredRAzFz=zHFPredRAzGz=zHGPredRAzFz=Gz
22 predss PredRAzA
23 fvreseq FFnAGFnAPredRAzAFPredRAz=GPredRAzwPredRAzFw=Gw
24 22 23 mpan2 FFnAGFnAFPredRAz=GPredRAzwPredRAzFw=Gw
25 24 biimpar FFnAGFnAwPredRAzFw=GwFPredRAz=GPredRAz
26 25 oveq2d FFnAGFnAwPredRAzFw=GwzHFPredRAz=zHGPredRAz
27 26 eqcomd FFnAGFnAwPredRAzFw=GwzHGPredRAz=zHFPredRAz
28 21 27 syl11 Fz=zHFPredRAzGz=zHGPredRAzFFnAGFnAwPredRAzFw=GwFz=Gz
29 28 expd Fz=zHFPredRAzGz=zHGPredRAzFFnAGFnAwPredRAzFw=GwFz=Gz
30 15 29 syl zAyAFy=yHFPredRAyGy=yHGPredRAyFFnAGFnAwPredRAzFw=GwFz=Gz
31 30 ex zAyAFy=yHFPredRAyGy=yHGPredRAyFFnAGFnAwPredRAzFw=GwFz=Gz
32 31 com23 zAFFnAGFnAyAFy=yHFPredRAyGy=yHGPredRAywPredRAzFw=GwFz=Gz
33 32 impd zAFFnAGFnAyAFy=yHFPredRAyGy=yHGPredRAywPredRAzFw=GwFz=Gz
34 3 33 biimtrrid zAFFnAGFnAyAFy=yHFPredRAyyAGy=yHGPredRAywPredRAzFw=GwFz=Gz
35 34 a2d zAFFnAGFnAyAFy=yHFPredRAyyAGy=yHGPredRAywPredRAzFw=GwFFnAGFnAyAFy=yHFPredRAyyAGy=yHGPredRAyFz=Gz
36 1 35 syl5 zAwPredRAzFFnAGFnAyAFy=yHFPredRAyyAGy=yHGPredRAyFw=GwFFnAGFnAyAFy=yHFPredRAyyAGy=yHGPredRAyFz=Gz
37 fveq2 z=wFz=Fw
38 fveq2 z=wGz=Gw
39 37 38 eqeq12d z=wFz=GzFw=Gw
40 39 imbi2d z=wFFnAGFnAyAFy=yHFPredRAyyAGy=yHGPredRAyFz=GzFFnAGFnAyAFy=yHFPredRAyyAGy=yHGPredRAyFw=Gw
41 36 40 frins2 RFrARSeAzAFFnAGFnAyAFy=yHFPredRAyyAGy=yHGPredRAyFz=Gz
42 rsp zAFFnAGFnAyAFy=yHFPredRAyyAGy=yHGPredRAyFz=GzzAFFnAGFnAyAFy=yHFPredRAyyAGy=yHGPredRAyFz=Gz
43 41 42 syl RFrARSeAzAFFnAGFnAyAFy=yHFPredRAyyAGy=yHGPredRAyFz=Gz
44 43 com3r FFnAGFnAyAFy=yHFPredRAyyAGy=yHGPredRAyRFrARSeAzAFz=Gz
45 44 an4s FFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyRFrARSeAzAFz=Gz
46 45 com12 RFrARSeAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyzAFz=Gz
47 46 3impib RFrARSeAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyzAFz=Gz
48 47 ralrimiv RFrARSeAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyzAFz=Gz
49 eqid A=A
50 48 49 jctil RFrARSeAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyA=AzAFz=Gz
51 eqfnfv2 FFnAGFnAF=GA=AzAFz=Gz
52 51 ad2ant2r FFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyF=GA=AzAFz=Gz
53 52 3adant1 RFrARSeAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyF=GA=AzAFz=Gz
54 50 53 mpbird RFrARSeAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyF=G