| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ra4v |  |-  ( A. w e. Pred ( R , A , z ) ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` w ) = ( G ` w ) ) -> ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) ) | 
						
							| 2 |  | r19.26 |  |-  ( A. y e. A ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) <-> ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) | 
						
							| 3 | 2 | anbi2i |  |-  ( ( ( F Fn A /\ G Fn A ) /\ A. y e. A ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) <-> ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) ) | 
						
							| 4 |  | fveq2 |  |-  ( y = z -> ( F ` y ) = ( F ` z ) ) | 
						
							| 5 |  | id |  |-  ( y = z -> y = z ) | 
						
							| 6 |  | predeq3 |  |-  ( y = z -> Pred ( R , A , y ) = Pred ( R , A , z ) ) | 
						
							| 7 | 6 | reseq2d |  |-  ( y = z -> ( F |` Pred ( R , A , y ) ) = ( F |` Pred ( R , A , z ) ) ) | 
						
							| 8 | 5 7 | oveq12d |  |-  ( y = z -> ( y H ( F |` Pred ( R , A , y ) ) ) = ( z H ( F |` Pred ( R , A , z ) ) ) ) | 
						
							| 9 | 4 8 | eqeq12d |  |-  ( y = z -> ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) <-> ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) ) ) | 
						
							| 10 |  | fveq2 |  |-  ( y = z -> ( G ` y ) = ( G ` z ) ) | 
						
							| 11 | 6 | reseq2d |  |-  ( y = z -> ( G |` Pred ( R , A , y ) ) = ( G |` Pred ( R , A , z ) ) ) | 
						
							| 12 | 5 11 | oveq12d |  |-  ( y = z -> ( y H ( G |` Pred ( R , A , y ) ) ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) | 
						
							| 13 | 10 12 | eqeq12d |  |-  ( y = z -> ( ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) <-> ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) ) | 
						
							| 14 | 9 13 | anbi12d |  |-  ( y = z -> ( ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) <-> ( ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) ) ) | 
						
							| 15 | 14 | rspcva |  |-  ( ( z e. A /\ A. y e. A ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) ) | 
						
							| 16 |  | eqtr3 |  |-  ( ( ( z H ( G |` Pred ( R , A , z ) ) ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) ) -> ( z H ( G |` Pred ( R , A , z ) ) ) = ( F ` z ) ) | 
						
							| 17 | 16 | eqcomd |  |-  ( ( ( z H ( G |` Pred ( R , A , z ) ) ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) ) -> ( F ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) | 
						
							| 18 |  | eqtr3 |  |-  ( ( ( F ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) /\ ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) -> ( F ` z ) = ( G ` z ) ) | 
						
							| 19 | 18 | ex |  |-  ( ( F ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) -> ( ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) -> ( F ` z ) = ( G ` z ) ) ) | 
						
							| 20 | 17 19 | syl |  |-  ( ( ( z H ( G |` Pred ( R , A , z ) ) ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) ) -> ( ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) -> ( F ` z ) = ( G ` z ) ) ) | 
						
							| 21 | 20 | expimpd |  |-  ( ( z H ( G |` Pred ( R , A , z ) ) ) = ( z H ( F |` Pred ( R , A , z ) ) ) -> ( ( ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) -> ( F ` z ) = ( G ` z ) ) ) | 
						
							| 22 |  | predss |  |-  Pred ( R , A , z ) C_ A | 
						
							| 23 |  | fvreseq |  |-  ( ( ( F Fn A /\ G Fn A ) /\ Pred ( R , A , z ) C_ A ) -> ( ( F |` Pred ( R , A , z ) ) = ( G |` Pred ( R , A , z ) ) <-> A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) ) | 
						
							| 24 | 22 23 | mpan2 |  |-  ( ( F Fn A /\ G Fn A ) -> ( ( F |` Pred ( R , A , z ) ) = ( G |` Pred ( R , A , z ) ) <-> A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) ) | 
						
							| 25 | 24 | biimpar |  |-  ( ( ( F Fn A /\ G Fn A ) /\ A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) -> ( F |` Pred ( R , A , z ) ) = ( G |` Pred ( R , A , z ) ) ) | 
						
							| 26 | 25 | oveq2d |  |-  ( ( ( F Fn A /\ G Fn A ) /\ A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) -> ( z H ( F |` Pred ( R , A , z ) ) ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) | 
						
							| 27 | 26 | eqcomd |  |-  ( ( ( F Fn A /\ G Fn A ) /\ A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) -> ( z H ( G |` Pred ( R , A , z ) ) ) = ( z H ( F |` Pred ( R , A , z ) ) ) ) | 
						
							| 28 | 21 27 | syl11 |  |-  ( ( ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) -> ( ( ( F Fn A /\ G Fn A ) /\ A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) -> ( F ` z ) = ( G ` z ) ) ) | 
						
							| 29 | 28 | expd |  |-  ( ( ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) -> ( ( F Fn A /\ G Fn A ) -> ( A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) -> ( F ` z ) = ( G ` z ) ) ) ) | 
						
							| 30 | 15 29 | syl |  |-  ( ( z e. A /\ A. y e. A ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( ( F Fn A /\ G Fn A ) -> ( A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) -> ( F ` z ) = ( G ` z ) ) ) ) | 
						
							| 31 | 30 | ex |  |-  ( z e. A -> ( A. y e. A ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) -> ( ( F Fn A /\ G Fn A ) -> ( A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) -> ( F ` z ) = ( G ` z ) ) ) ) ) | 
						
							| 32 | 31 | com23 |  |-  ( z e. A -> ( ( F Fn A /\ G Fn A ) -> ( A. y e. A ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) -> ( A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) -> ( F ` z ) = ( G ` z ) ) ) ) ) | 
						
							| 33 | 32 | impd |  |-  ( z e. A -> ( ( ( F Fn A /\ G Fn A ) /\ A. y e. A ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) -> ( F ` z ) = ( G ` z ) ) ) ) | 
						
							| 34 | 3 33 | biimtrrid |  |-  ( z e. A -> ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) -> ( F ` z ) = ( G ` z ) ) ) ) | 
						
							| 35 | 34 | a2d |  |-  ( z e. A -> ( ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) -> ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` z ) = ( G ` z ) ) ) ) | 
						
							| 36 | 1 35 | syl5 |  |-  ( z e. A -> ( A. w e. Pred ( R , A , z ) ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` w ) = ( G ` w ) ) -> ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` z ) = ( G ` z ) ) ) ) | 
						
							| 37 |  | fveq2 |  |-  ( z = w -> ( F ` z ) = ( F ` w ) ) | 
						
							| 38 |  | fveq2 |  |-  ( z = w -> ( G ` z ) = ( G ` w ) ) | 
						
							| 39 | 37 38 | eqeq12d |  |-  ( z = w -> ( ( F ` z ) = ( G ` z ) <-> ( F ` w ) = ( G ` w ) ) ) | 
						
							| 40 | 39 | imbi2d |  |-  ( z = w -> ( ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` z ) = ( G ` z ) ) <-> ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` w ) = ( G ` w ) ) ) ) | 
						
							| 41 | 36 40 | frins2 |  |-  ( ( R Fr A /\ R Se A ) -> A. z e. A ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` z ) = ( G ` z ) ) ) | 
						
							| 42 |  | rsp |  |-  ( A. z e. A ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` z ) = ( G ` z ) ) -> ( z e. A -> ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` z ) = ( G ` z ) ) ) ) | 
						
							| 43 | 41 42 | syl |  |-  ( ( R Fr A /\ R Se A ) -> ( z e. A -> ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` z ) = ( G ` z ) ) ) ) | 
						
							| 44 | 43 | com3r |  |-  ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( ( R Fr A /\ R Se A ) -> ( z e. A -> ( F ` z ) = ( G ` z ) ) ) ) | 
						
							| 45 | 44 | an4s |  |-  ( ( ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( ( R Fr A /\ R Se A ) -> ( z e. A -> ( F ` z ) = ( G ` z ) ) ) ) | 
						
							| 46 | 45 | com12 |  |-  ( ( R Fr A /\ R Se A ) -> ( ( ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( z e. A -> ( F ` z ) = ( G ` z ) ) ) ) | 
						
							| 47 | 46 | 3impib |  |-  ( ( ( R Fr A /\ R Se A ) /\ ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( z e. A -> ( F ` z ) = ( G ` z ) ) ) | 
						
							| 48 | 47 | ralrimiv |  |-  ( ( ( R Fr A /\ R Se A ) /\ ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> A. z e. A ( F ` z ) = ( G ` z ) ) | 
						
							| 49 |  | eqid |  |-  A = A | 
						
							| 50 | 48 49 | jctil |  |-  ( ( ( R Fr A /\ R Se A ) /\ ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( A = A /\ A. z e. A ( F ` z ) = ( G ` z ) ) ) | 
						
							| 51 |  | eqfnfv2 |  |-  ( ( F Fn A /\ G Fn A ) -> ( F = G <-> ( A = A /\ A. z e. A ( F ` z ) = ( G ` z ) ) ) ) | 
						
							| 52 | 51 | ad2ant2r |  |-  ( ( ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F = G <-> ( A = A /\ A. z e. A ( F ` z ) = ( G ` z ) ) ) ) | 
						
							| 53 | 52 | 3adant1 |  |-  ( ( ( R Fr A /\ R Se A ) /\ ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F = G <-> ( A = A /\ A. z e. A ( F ` z ) = ( G ` z ) ) ) ) | 
						
							| 54 | 50 53 | mpbird |  |-  ( ( ( R Fr A /\ R Se A ) /\ ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> F = G ) |