Step |
Hyp |
Ref |
Expression |
1 |
|
ra4v |
|- ( A. w e. Pred ( R , A , z ) ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` w ) = ( G ` w ) ) -> ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) ) |
2 |
|
r19.26 |
|- ( A. y e. A ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) <-> ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) |
3 |
2
|
anbi2i |
|- ( ( ( F Fn A /\ G Fn A ) /\ A. y e. A ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) <-> ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) ) |
4 |
|
fveq2 |
|- ( y = z -> ( F ` y ) = ( F ` z ) ) |
5 |
|
id |
|- ( y = z -> y = z ) |
6 |
|
predeq3 |
|- ( y = z -> Pred ( R , A , y ) = Pred ( R , A , z ) ) |
7 |
6
|
reseq2d |
|- ( y = z -> ( F |` Pred ( R , A , y ) ) = ( F |` Pred ( R , A , z ) ) ) |
8 |
5 7
|
oveq12d |
|- ( y = z -> ( y H ( F |` Pred ( R , A , y ) ) ) = ( z H ( F |` Pred ( R , A , z ) ) ) ) |
9 |
4 8
|
eqeq12d |
|- ( y = z -> ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) <-> ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) ) ) |
10 |
|
fveq2 |
|- ( y = z -> ( G ` y ) = ( G ` z ) ) |
11 |
6
|
reseq2d |
|- ( y = z -> ( G |` Pred ( R , A , y ) ) = ( G |` Pred ( R , A , z ) ) ) |
12 |
5 11
|
oveq12d |
|- ( y = z -> ( y H ( G |` Pred ( R , A , y ) ) ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) |
13 |
10 12
|
eqeq12d |
|- ( y = z -> ( ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) <-> ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) ) |
14 |
9 13
|
anbi12d |
|- ( y = z -> ( ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) <-> ( ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) ) ) |
15 |
14
|
rspcva |
|- ( ( z e. A /\ A. y e. A ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) ) |
16 |
|
eqtr3 |
|- ( ( ( z H ( G |` Pred ( R , A , z ) ) ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) ) -> ( z H ( G |` Pred ( R , A , z ) ) ) = ( F ` z ) ) |
17 |
16
|
eqcomd |
|- ( ( ( z H ( G |` Pred ( R , A , z ) ) ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) ) -> ( F ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) |
18 |
|
eqtr3 |
|- ( ( ( F ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) /\ ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) -> ( F ` z ) = ( G ` z ) ) |
19 |
18
|
ex |
|- ( ( F ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) -> ( ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) -> ( F ` z ) = ( G ` z ) ) ) |
20 |
17 19
|
syl |
|- ( ( ( z H ( G |` Pred ( R , A , z ) ) ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) ) -> ( ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) -> ( F ` z ) = ( G ` z ) ) ) |
21 |
20
|
expimpd |
|- ( ( z H ( G |` Pred ( R , A , z ) ) ) = ( z H ( F |` Pred ( R , A , z ) ) ) -> ( ( ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) -> ( F ` z ) = ( G ` z ) ) ) |
22 |
|
predss |
|- Pred ( R , A , z ) C_ A |
23 |
|
fvreseq |
|- ( ( ( F Fn A /\ G Fn A ) /\ Pred ( R , A , z ) C_ A ) -> ( ( F |` Pred ( R , A , z ) ) = ( G |` Pred ( R , A , z ) ) <-> A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) ) |
24 |
22 23
|
mpan2 |
|- ( ( F Fn A /\ G Fn A ) -> ( ( F |` Pred ( R , A , z ) ) = ( G |` Pred ( R , A , z ) ) <-> A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) ) |
25 |
24
|
biimpar |
|- ( ( ( F Fn A /\ G Fn A ) /\ A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) -> ( F |` Pred ( R , A , z ) ) = ( G |` Pred ( R , A , z ) ) ) |
26 |
25
|
oveq2d |
|- ( ( ( F Fn A /\ G Fn A ) /\ A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) -> ( z H ( F |` Pred ( R , A , z ) ) ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) |
27 |
26
|
eqcomd |
|- ( ( ( F Fn A /\ G Fn A ) /\ A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) -> ( z H ( G |` Pred ( R , A , z ) ) ) = ( z H ( F |` Pred ( R , A , z ) ) ) ) |
28 |
21 27
|
syl11 |
|- ( ( ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) -> ( ( ( F Fn A /\ G Fn A ) /\ A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) -> ( F ` z ) = ( G ` z ) ) ) |
29 |
28
|
expd |
|- ( ( ( F ` z ) = ( z H ( F |` Pred ( R , A , z ) ) ) /\ ( G ` z ) = ( z H ( G |` Pred ( R , A , z ) ) ) ) -> ( ( F Fn A /\ G Fn A ) -> ( A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) -> ( F ` z ) = ( G ` z ) ) ) ) |
30 |
15 29
|
syl |
|- ( ( z e. A /\ A. y e. A ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( ( F Fn A /\ G Fn A ) -> ( A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) -> ( F ` z ) = ( G ` z ) ) ) ) |
31 |
30
|
ex |
|- ( z e. A -> ( A. y e. A ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) -> ( ( F Fn A /\ G Fn A ) -> ( A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) -> ( F ` z ) = ( G ` z ) ) ) ) ) |
32 |
31
|
com23 |
|- ( z e. A -> ( ( F Fn A /\ G Fn A ) -> ( A. y e. A ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) -> ( A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) -> ( F ` z ) = ( G ` z ) ) ) ) ) |
33 |
32
|
impd |
|- ( z e. A -> ( ( ( F Fn A /\ G Fn A ) /\ A. y e. A ( ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) -> ( F ` z ) = ( G ` z ) ) ) ) |
34 |
3 33
|
syl5bir |
|- ( z e. A -> ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) -> ( F ` z ) = ( G ` z ) ) ) ) |
35 |
34
|
a2d |
|- ( z e. A -> ( ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> A. w e. Pred ( R , A , z ) ( F ` w ) = ( G ` w ) ) -> ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` z ) = ( G ` z ) ) ) ) |
36 |
1 35
|
syl5 |
|- ( z e. A -> ( A. w e. Pred ( R , A , z ) ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` w ) = ( G ` w ) ) -> ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` z ) = ( G ` z ) ) ) ) |
37 |
|
fveq2 |
|- ( z = w -> ( F ` z ) = ( F ` w ) ) |
38 |
|
fveq2 |
|- ( z = w -> ( G ` z ) = ( G ` w ) ) |
39 |
37 38
|
eqeq12d |
|- ( z = w -> ( ( F ` z ) = ( G ` z ) <-> ( F ` w ) = ( G ` w ) ) ) |
40 |
39
|
imbi2d |
|- ( z = w -> ( ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` z ) = ( G ` z ) ) <-> ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` w ) = ( G ` w ) ) ) ) |
41 |
36 40
|
frins2 |
|- ( ( R Fr A /\ R Se A ) -> A. z e. A ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` z ) = ( G ` z ) ) ) |
42 |
|
rsp |
|- ( A. z e. A ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` z ) = ( G ` z ) ) -> ( z e. A -> ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` z ) = ( G ` z ) ) ) ) |
43 |
41 42
|
syl |
|- ( ( R Fr A /\ R Se A ) -> ( z e. A -> ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F ` z ) = ( G ` z ) ) ) ) |
44 |
43
|
com3r |
|- ( ( ( F Fn A /\ G Fn A ) /\ ( A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( ( R Fr A /\ R Se A ) -> ( z e. A -> ( F ` z ) = ( G ` z ) ) ) ) |
45 |
44
|
an4s |
|- ( ( ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( ( R Fr A /\ R Se A ) -> ( z e. A -> ( F ` z ) = ( G ` z ) ) ) ) |
46 |
45
|
com12 |
|- ( ( R Fr A /\ R Se A ) -> ( ( ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( z e. A -> ( F ` z ) = ( G ` z ) ) ) ) |
47 |
46
|
3impib |
|- ( ( ( R Fr A /\ R Se A ) /\ ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( z e. A -> ( F ` z ) = ( G ` z ) ) ) |
48 |
47
|
ralrimiv |
|- ( ( ( R Fr A /\ R Se A ) /\ ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> A. z e. A ( F ` z ) = ( G ` z ) ) |
49 |
|
eqid |
|- A = A |
50 |
48 49
|
jctil |
|- ( ( ( R Fr A /\ R Se A ) /\ ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( A = A /\ A. z e. A ( F ` z ) = ( G ` z ) ) ) |
51 |
|
eqfnfv2 |
|- ( ( F Fn A /\ G Fn A ) -> ( F = G <-> ( A = A /\ A. z e. A ( F ` z ) = ( G ` z ) ) ) ) |
52 |
51
|
ad2ant2r |
|- ( ( ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F = G <-> ( A = A /\ A. z e. A ( F ` z ) = ( G ` z ) ) ) ) |
53 |
52
|
3adant1 |
|- ( ( ( R Fr A /\ R Se A ) /\ ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> ( F = G <-> ( A = A /\ A. z e. A ( F ` z ) = ( G ` z ) ) ) ) |
54 |
50 53
|
mpbird |
|- ( ( ( R Fr A /\ R Se A ) /\ ( F Fn A /\ A. y e. A ( F ` y ) = ( y H ( F |` Pred ( R , A , y ) ) ) ) /\ ( G Fn A /\ A. y e. A ( G ` y ) = ( y H ( G |` Pred ( R , A , y ) ) ) ) ) -> F = G ) |