Step |
Hyp |
Ref |
Expression |
1 |
|
ra4v |
⊢ ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
2 |
|
r19.26 |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
3 |
2
|
anbi2i |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ↔ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) |
4 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) |
5 |
|
id |
⊢ ( 𝑦 = 𝑧 → 𝑦 = 𝑧 ) |
6 |
|
predeq3 |
⊢ ( 𝑦 = 𝑧 → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
7 |
6
|
reseq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
8 |
5 7
|
oveq12d |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
9 |
4 8
|
eqeq12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ) |
11 |
6
|
reseq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
12 |
5 11
|
oveq12d |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
13 |
10 12
|
eqeq12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐺 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) |
14 |
9 13
|
anbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) ) |
15 |
14
|
rspcva |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) |
16 |
|
eqtr3 |
⊢ ( ( ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝐹 ‘ 𝑧 ) ) |
17 |
16
|
eqcomd |
⊢ ( ( ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
18 |
|
eqtr3 |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
19 |
18
|
ex |
⊢ ( ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) → ( ( 𝐺 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
20 |
17 19
|
syl |
⊢ ( ( ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( ( 𝐺 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
21 |
20
|
expimpd |
⊢ ( ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) → ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
22 |
|
predss |
⊢ Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝐴 |
23 |
|
fvreseq |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝐴 ) → ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ↔ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
24 |
22 23
|
mpan2 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ↔ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
25 |
24
|
biimpar |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
26 |
25
|
oveq2d |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
27 |
26
|
eqcomd |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
28 |
21 27
|
syl11 |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
29 |
28
|
expd |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
30 |
15 29
|
syl |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
31 |
30
|
ex |
⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) → ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) ) |
32 |
31
|
com23 |
⊢ ( 𝑧 ∈ 𝐴 → ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) ) |
33 |
32
|
impd |
⊢ ( 𝑧 ∈ 𝐴 → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
34 |
3 33
|
syl5bir |
⊢ ( 𝑧 ∈ 𝐴 → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
35 |
34
|
a2d |
⊢ ( 𝑧 ∈ 𝐴 → ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
36 |
1 35
|
syl5 |
⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
37 |
|
fveq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) |
38 |
|
fveq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑤 ) ) |
39 |
37 38
|
eqeq12d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
40 |
39
|
imbi2d |
⊢ ( 𝑧 = 𝑤 → ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ↔ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
41 |
36 40
|
frins2 |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑧 ∈ 𝐴 ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
42 |
|
rsp |
⊢ ( ∀ 𝑧 ∈ 𝐴 ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) → ( 𝑧 ∈ 𝐴 → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
43 |
41 42
|
syl |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑧 ∈ 𝐴 → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
44 |
43
|
com3r |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑧 ∈ 𝐴 → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
45 |
44
|
an4s |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑧 ∈ 𝐴 → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
46 |
45
|
com12 |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝑧 ∈ 𝐴 → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
47 |
46
|
3impib |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝑧 ∈ 𝐴 → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
48 |
47
|
ralrimiv |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
49 |
|
eqid |
⊢ 𝐴 = 𝐴 |
50 |
48 49
|
jctil |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐴 = 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
51 |
|
eqfnfv2 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝐹 = 𝐺 ↔ ( 𝐴 = 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
52 |
51
|
ad2ant2r |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 = 𝐺 ↔ ( 𝐴 = 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
53 |
52
|
3adant1 |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 = 𝐺 ↔ ( 𝐴 = 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
54 |
50 53
|
mpbird |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → 𝐹 = 𝐺 ) |