| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ra4v | ⊢ ( ∀ 𝑤  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ( ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) )  →  ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ( ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ∀ 𝑤  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 2 |  | r19.26 | ⊢ ( ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) )  ↔  ( ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) ) | 
						
							| 3 | 2 | anbi2i | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  ↔  ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ( ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 5 |  | id | ⊢ ( 𝑦  =  𝑧  →  𝑦  =  𝑧 ) | 
						
							| 6 |  | predeq3 | ⊢ ( 𝑦  =  𝑧  →  Pred ( 𝑅 ,  𝐴 ,  𝑦 )  =  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) | 
						
							| 7 | 6 | reseq2d | ⊢ ( 𝑦  =  𝑧  →  ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) )  =  ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) | 
						
							| 8 | 5 7 | oveq12d | ⊢ ( 𝑦  =  𝑧  →  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  =  ( 𝑧 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) | 
						
							| 9 | 4 8 | eqeq12d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ↔  ( 𝐹 ‘ 𝑧 )  =  ( 𝑧 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 11 | 6 | reseq2d | ⊢ ( 𝑦  =  𝑧  →  ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) )  =  ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) | 
						
							| 12 | 5 11 | oveq12d | ⊢ ( 𝑦  =  𝑧  →  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  =  ( 𝑧 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) | 
						
							| 13 | 10 12 | eqeq12d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ↔  ( 𝐺 ‘ 𝑧 )  =  ( 𝑧 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) ) | 
						
							| 14 | 9 13 | anbi12d | ⊢ ( 𝑦  =  𝑧  →  ( ( ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) )  ↔  ( ( 𝐹 ‘ 𝑧 )  =  ( 𝑧 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 𝑧 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) ) ) | 
						
							| 15 | 14 | rspcva | ⊢ ( ( 𝑧  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ( ( 𝐹 ‘ 𝑧 )  =  ( 𝑧 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 𝑧 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) ) | 
						
							| 16 |  | eqtr3 | ⊢ ( ( ( 𝑧 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  =  ( 𝑧 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  ∧  ( 𝐹 ‘ 𝑧 )  =  ( 𝑧 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) )  →  ( 𝑧 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 17 | 16 | eqcomd | ⊢ ( ( ( 𝑧 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  =  ( 𝑧 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  ∧  ( 𝐹 ‘ 𝑧 )  =  ( 𝑧 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝑧 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) | 
						
							| 18 |  | eqtr3 | ⊢ ( ( ( 𝐹 ‘ 𝑧 )  =  ( 𝑧 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 𝑧 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 19 | 18 | ex | ⊢ ( ( 𝐹 ‘ 𝑧 )  =  ( 𝑧 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  →  ( ( 𝐺 ‘ 𝑧 )  =  ( 𝑧 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 20 | 17 19 | syl | ⊢ ( ( ( 𝑧 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  =  ( 𝑧 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  ∧  ( 𝐹 ‘ 𝑧 )  =  ( 𝑧 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) )  →  ( ( 𝐺 ‘ 𝑧 )  =  ( 𝑧 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 21 | 20 | expimpd | ⊢ ( ( 𝑧 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  =  ( 𝑧 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  →  ( ( ( 𝐹 ‘ 𝑧 )  =  ( 𝑧 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 𝑧 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 22 |  | predss | ⊢ Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝐴 | 
						
							| 23 |  | fvreseq | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝐴 )  →  ( ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) )  =  ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) )  ↔  ∀ 𝑤  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 24 | 22 23 | mpan2 | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  ( ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) )  =  ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) )  ↔  ∀ 𝑤  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 25 | 24 | biimpar | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ∀ 𝑤  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) )  →  ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) )  =  ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ∀ 𝑤  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) )  →  ( 𝑧 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  =  ( 𝑧 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) | 
						
							| 27 | 26 | eqcomd | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ∀ 𝑤  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) )  →  ( 𝑧 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  =  ( 𝑧 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) | 
						
							| 28 | 21 27 | syl11 | ⊢ ( ( ( 𝐹 ‘ 𝑧 )  =  ( 𝑧 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 𝑧 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) )  →  ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ∀ 𝑤  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 29 | 28 | expd | ⊢ ( ( ( 𝐹 ‘ 𝑧 )  =  ( 𝑧 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 𝑧 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) )  →  ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  ( ∀ 𝑤  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 30 | 15 29 | syl | ⊢ ( ( 𝑧  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  ( ∀ 𝑤  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 31 | 30 | ex | ⊢ ( 𝑧  ∈  𝐴  →  ( ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) )  →  ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  ( ∀ 𝑤  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) ) ) | 
						
							| 32 | 31 | com23 | ⊢ ( 𝑧  ∈  𝐴  →  ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  ( ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) )  →  ( ∀ 𝑤  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) ) ) | 
						
							| 33 | 32 | impd | ⊢ ( 𝑧  ∈  𝐴  →  ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ( ∀ 𝑤  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 34 | 3 33 | biimtrrid | ⊢ ( 𝑧  ∈  𝐴  →  ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ( ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ( ∀ 𝑤  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 35 | 34 | a2d | ⊢ ( 𝑧  ∈  𝐴  →  ( ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ( ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ∀ 𝑤  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) )  →  ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ( ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 36 | 1 35 | syl5 | ⊢ ( 𝑧  ∈  𝐴  →  ( ∀ 𝑤  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ( ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) )  →  ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ( ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 37 |  | fveq2 | ⊢ ( 𝑧  =  𝑤  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 38 |  | fveq2 | ⊢ ( 𝑧  =  𝑤  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑤 ) ) | 
						
							| 39 | 37 38 | eqeq12d | ⊢ ( 𝑧  =  𝑤  →  ( ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 )  ↔  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 40 | 39 | imbi2d | ⊢ ( 𝑧  =  𝑤  →  ( ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ( ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) )  ↔  ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ( ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) | 
						
							| 41 | 36 40 | frins2 | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  ∀ 𝑧  ∈  𝐴 ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ( ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 42 |  | rsp | ⊢ ( ∀ 𝑧  ∈  𝐴 ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ( ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) )  →  ( 𝑧  ∈  𝐴  →  ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ( ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 43 | 41 42 | syl | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  ( 𝑧  ∈  𝐴  →  ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ( ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 44 | 43 | com3r | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ( ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  ( 𝑧  ∈  𝐴  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 45 | 44 | an4s | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) )  ∧  ( 𝐺  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  ( 𝑧  ∈  𝐴  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 46 | 45 | com12 | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) )  ∧  ( 𝐺  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ( 𝑧  ∈  𝐴  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 47 | 46 | 3impib | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝐹  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) )  ∧  ( 𝐺  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ( 𝑧  ∈  𝐴  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 48 | 47 | ralrimiv | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝐹  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) )  ∧  ( 𝐺  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ∀ 𝑧  ∈  𝐴 ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 49 |  | eqid | ⊢ 𝐴  =  𝐴 | 
						
							| 50 | 48 49 | jctil | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝐹  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) )  ∧  ( 𝐺  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ( 𝐴  =  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 51 |  | eqfnfv2 | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  ( 𝐹  =  𝐺  ↔  ( 𝐴  =  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 52 | 51 | ad2ant2r | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) )  ∧  ( 𝐺  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ( 𝐹  =  𝐺  ↔  ( 𝐴  =  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 53 | 52 | 3adant1 | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝐹  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) )  ∧  ( 𝐺  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  ( 𝐹  =  𝐺  ↔  ( 𝐴  =  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 54 | 50 53 | mpbird | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝐹  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) )  ∧  ( 𝐺  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐺 ‘ 𝑦 )  =  ( 𝑦 𝐻 ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) )  →  𝐹  =  𝐺 ) |