Metamath Proof Explorer


Theorem frr3g

Description: Functions defined by well-founded recursion are identical up to relation, domain, and characteristic function. General version of frr3 . (Contributed by Scott Fenton, 10-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion frr3g ( ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → 𝐹 = 𝐺 )

Proof

Step Hyp Ref Expression
1 ra4v ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) → ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) )
2 r19.26 ( ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ( ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) )
3 2 anbi2i ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ↔ ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) )
4 fveq2 ( 𝑦 = 𝑧 → ( 𝐹𝑦 ) = ( 𝐹𝑧 ) )
5 id ( 𝑦 = 𝑧𝑦 = 𝑧 )
6 predeq3 ( 𝑦 = 𝑧 → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑧 ) )
7 6 reseq2d ( 𝑦 = 𝑧 → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) )
8 5 7 oveq12d ( 𝑦 = 𝑧 → ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) )
9 4 8 eqeq12d ( 𝑦 = 𝑧 → ( ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐹𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) )
10 fveq2 ( 𝑦 = 𝑧 → ( 𝐺𝑦 ) = ( 𝐺𝑧 ) )
11 6 reseq2d ( 𝑦 = 𝑧 → ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) )
12 5 11 oveq12d ( 𝑦 = 𝑧 → ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) )
13 10 12 eqeq12d ( 𝑦 = 𝑧 → ( ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐺𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) )
14 9 13 anbi12d ( 𝑦 = 𝑧 → ( ( ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ( ( 𝐹𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) )
15 14 rspcva ( ( 𝑧𝐴 ∧ ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ( 𝐹𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) )
16 eqtr3 ( ( ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐹𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝐹𝑧 ) )
17 16 eqcomd ( ( ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐹𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( 𝐹𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) )
18 eqtr3 ( ( ( 𝐹𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) )
19 18 ex ( ( 𝐹𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) → ( ( 𝐺𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) )
20 17 19 syl ( ( ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐹𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( ( 𝐺𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) )
21 20 expimpd ( ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) → ( ( ( 𝐹𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) )
22 predss Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝐴
23 fvreseq ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝐴 ) → ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ↔ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) )
24 22 23 mpan2 ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) → ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ↔ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) )
25 24 biimpar ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) )
26 25 oveq2d ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) → ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) )
27 26 eqcomd ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) → ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) )
28 21 27 syl11 ( ( ( 𝐹𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) )
29 28 expd ( ( ( 𝐹𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
30 15 29 syl ( ( 𝑧𝐴 ∧ ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
31 30 ex ( 𝑧𝐴 → ( ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) → ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) ) )
32 31 com23 ( 𝑧𝐴 → ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) → ( ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) ) )
33 32 impd ( 𝑧𝐴 → ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
34 3 33 syl5bir ( 𝑧𝐴 → ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
35 34 a2d ( 𝑧𝐴 → ( ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) → ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
36 1 35 syl5 ( 𝑧𝐴 → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) → ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
37 fveq2 ( 𝑧 = 𝑤 → ( 𝐹𝑧 ) = ( 𝐹𝑤 ) )
38 fveq2 ( 𝑧 = 𝑤 → ( 𝐺𝑧 ) = ( 𝐺𝑤 ) )
39 37 38 eqeq12d ( 𝑧 = 𝑤 → ( ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ↔ ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) )
40 39 imbi2d ( 𝑧 = 𝑤 → ( ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ↔ ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) ) )
41 36 40 frins2 ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) → ∀ 𝑧𝐴 ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) )
42 rsp ( ∀ 𝑧𝐴 ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) → ( 𝑧𝐴 → ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
43 41 42 syl ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) → ( 𝑧𝐴 → ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
44 43 com3r ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) → ( 𝑧𝐴 → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
45 44 an4s ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) → ( 𝑧𝐴 → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
46 45 com12 ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) → ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝑧𝐴 → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
47 46 3impib ( ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝑧𝐴 → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) )
48 47 ralrimiv ( ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ∀ 𝑧𝐴 ( 𝐹𝑧 ) = ( 𝐺𝑧 ) )
49 eqid 𝐴 = 𝐴
50 48 49 jctil ( ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐴 = 𝐴 ∧ ∀ 𝑧𝐴 ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) )
51 eqfnfv2 ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) → ( 𝐹 = 𝐺 ↔ ( 𝐴 = 𝐴 ∧ ∀ 𝑧𝐴 ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
52 51 ad2ant2r ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 = 𝐺 ↔ ( 𝐴 = 𝐴 ∧ ∀ 𝑧𝐴 ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
53 52 3adant1 ( ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 = 𝐺 ↔ ( 𝐴 = 𝐴 ∧ ∀ 𝑧𝐴 ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
54 50 53 mpbird ( ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → 𝐹 = 𝐺 )