Metamath Proof Explorer


Theorem frr3

Description: Law of general well-founded recursion, part three. Finally, we show that F is unique. We do this by showing that any function H with the same properties we proved of F in frr1 and frr2 is identical to F . (Contributed by Scott Fenton, 11-Sep-2023)

Ref Expression
Hypothesis frr.1 F=frecsRAG
Assertion frr3 RFrARSeAHFnAzAHz=zGHPredRAzF=H

Proof

Step Hyp Ref Expression
1 frr.1 F=frecsRAG
2 simpl RFrARSeAHFnAzAHz=zGHPredRAzRFrARSeA
3 1 frr1 RFrARSeAFFnA
4 1 frr2 RFrARSeAzAFz=zGFPredRAz
5 4 ralrimiva RFrARSeAzAFz=zGFPredRAz
6 3 5 jca RFrARSeAFFnAzAFz=zGFPredRAz
7 6 adantr RFrARSeAHFnAzAHz=zGHPredRAzFFnAzAFz=zGFPredRAz
8 simpr RFrARSeAHFnAzAHz=zGHPredRAzHFnAzAHz=zGHPredRAz
9 frr3g RFrARSeAFFnAzAFz=zGFPredRAzHFnAzAHz=zGHPredRAzF=H
10 2 7 8 9 syl3anc RFrARSeAHFnAzAHz=zGHPredRAzF=H