| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frrlem4.1 |
|
| 2 |
1
|
frrlem2 |
|
| 3 |
2
|
funfnd |
|
| 4 |
|
fnresin1 |
|
| 5 |
3 4
|
syl |
|
| 6 |
5
|
adantr |
|
| 7 |
1
|
frrlem1 |
|
| 8 |
7
|
eqabri |
|
| 9 |
|
fndm |
|
| 10 |
9
|
adantr |
|
| 11 |
10
|
raleqdv |
|
| 12 |
11
|
biimp3ar |
|
| 13 |
|
rsp |
|
| 14 |
12 13
|
syl |
|
| 15 |
14
|
exlimiv |
|
| 16 |
8 15
|
sylbi |
|
| 17 |
|
elinel1 |
|
| 18 |
16 17
|
impel |
|
| 19 |
18
|
adantlr |
|
| 20 |
|
simpr |
|
| 21 |
20
|
fvresd |
|
| 22 |
|
resres |
|
| 23 |
|
predss |
|
| 24 |
|
sseqin2 |
|
| 25 |
23 24
|
mpbi |
|
| 26 |
1
|
frrlem1 |
|
| 27 |
26
|
eqabri |
|
| 28 |
|
exdistrv |
|
| 29 |
|
inss1 |
|
| 30 |
|
simpl2l |
|
| 31 |
29 30
|
sstrid |
|
| 32 |
|
simp2r |
|
| 33 |
|
simp2r |
|
| 34 |
|
nfra1 |
|
| 35 |
|
nfra1 |
|
| 36 |
34 35
|
nfan |
|
| 37 |
|
elinel1 |
|
| 38 |
|
rsp |
|
| 39 |
37 38
|
syl5com |
|
| 40 |
|
elinel2 |
|
| 41 |
|
rsp |
|
| 42 |
40 41
|
syl5com |
|
| 43 |
39 42
|
anim12d |
|
| 44 |
|
ssin |
|
| 45 |
44
|
biimpi |
|
| 46 |
43 45
|
syl6com |
|
| 47 |
36 46
|
ralrimi |
|
| 48 |
32 33 47
|
syl2an |
|
| 49 |
|
simpl1 |
|
| 50 |
49
|
fndmd |
|
| 51 |
|
simpr1 |
|
| 52 |
51
|
fndmd |
|
| 53 |
|
ineq12 |
|
| 54 |
53
|
sseq1d |
|
| 55 |
53
|
sseq2d |
|
| 56 |
53 55
|
raleqbidv |
|
| 57 |
54 56
|
anbi12d |
|
| 58 |
50 52 57
|
syl2anc |
|
| 59 |
31 48 58
|
mpbir2and |
|
| 60 |
59
|
exlimivv |
|
| 61 |
28 60
|
sylbir |
|
| 62 |
8 27 61
|
syl2anb |
|
| 63 |
62
|
adantr |
|
| 64 |
|
preddowncl |
|
| 65 |
63 20 64
|
sylc |
|
| 66 |
25 65
|
eqtrid |
|
| 67 |
66
|
reseq2d |
|
| 68 |
22 67
|
eqtrid |
|
| 69 |
68
|
oveq2d |
|
| 70 |
19 21 69
|
3eqtr4d |
|
| 71 |
70
|
ralrimiva |
|
| 72 |
6 71
|
jca |
|