Metamath Proof Explorer


Theorem frrlem3

Description: Lemma for well-founded recursion. An acceptable function's domain is a subset of A . (Contributed by Paul Chapman, 21-Apr-2012)

Ref Expression
Hypothesis frrlem1.1 B=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
Assertion frrlem3 gBdomgA

Proof

Step Hyp Ref Expression
1 frrlem1.1 B=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
2 1 frrlem1 B=g|zgFnzzAwzPredRAwzwzgw=wGgPredRAw
3 2 eqabri gBzgFnzzAwzPredRAwzwzgw=wGgPredRAw
4 fndm gFnzdomg=z
5 4 sseq1d gFnzdomgAzA
6 5 biimpar gFnzzAdomgA
7 6 adantrr gFnzzAwzPredRAwzdomgA
8 7 3adant3 gFnzzAwzPredRAwzwzgw=wGgPredRAwdomgA
9 8 exlimiv zgFnzzAwzPredRAwzwzgw=wGgPredRAwdomgA
10 3 9 sylbi gBdomgA