Metamath Proof Explorer


Theorem fsovfvd

Description: Value of the operator, ( A O B ) , which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, A and B , when applied to function F . (Contributed by RP, 25-Apr-2021)

Ref Expression
Hypotheses fsovd.fs O=aV,bVf𝒫baybxa|yfx
fsovd.a φAV
fsovd.b φBW
fsovfvd.g G=AOB
fsovfvd.f φF𝒫BA
Assertion fsovfvd φGF=yBxA|yFx

Proof

Step Hyp Ref Expression
1 fsovd.fs O=aV,bVf𝒫baybxa|yfx
2 fsovd.a φAV
3 fsovd.b φBW
4 fsovfvd.g G=AOB
5 fsovfvd.f φF𝒫BA
6 1 2 3 fsovd φAOB=f𝒫BAyBxA|yfx
7 4 6 eqtrid φG=f𝒫BAyBxA|yfx
8 fveq1 f=Ffx=Fx
9 8 eleq2d f=FyfxyFx
10 9 rabbidv f=FxA|yfx=xA|yFx
11 10 mpteq2dv f=FyBxA|yfx=yBxA|yFx
12 11 adantl φf=FyBxA|yfx=yBxA|yFx
13 3 mptexd φyBxA|yFxV
14 7 12 5 13 fvmptd φGF=yBxA|yFx