Metamath Proof Explorer


Theorem fsovfvd

Description: Value of the operator, ( A O B ) , which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, A and B , when applied to function F . (Contributed by RP, 25-Apr-2021)

Ref Expression
Hypotheses fsovd.fs O = a V , b V f 𝒫 b a y b x a | y f x
fsovd.a φ A V
fsovd.b φ B W
fsovfvd.g G = A O B
fsovfvd.f φ F 𝒫 B A
Assertion fsovfvd φ G F = y B x A | y F x

Proof

Step Hyp Ref Expression
1 fsovd.fs O = a V , b V f 𝒫 b a y b x a | y f x
2 fsovd.a φ A V
3 fsovd.b φ B W
4 fsovfvd.g G = A O B
5 fsovfvd.f φ F 𝒫 B A
6 1 2 3 fsovd φ A O B = f 𝒫 B A y B x A | y f x
7 4 6 syl5eq φ G = f 𝒫 B A y B x A | y f x
8 fveq1 f = F f x = F x
9 8 eleq2d f = F y f x y F x
10 9 rabbidv f = F x A | y f x = x A | y F x
11 10 mpteq2dv f = F y B x A | y f x = y B x A | y F x
12 11 adantl φ f = F y B x A | y f x = y B x A | y F x
13 3 mptexd φ y B x A | y F x V
14 7 12 5 13 fvmptd φ G F = y B x A | y F x