Metamath Proof Explorer


Theorem fssd

Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fssd.f φF:AB
fssd.b φBC
Assertion fssd φF:AC

Proof

Step Hyp Ref Expression
1 fssd.f φF:AB
2 fssd.b φBC
3 fss F:ABBCF:AC
4 1 2 3 syl2anc φF:AC