Metamath Proof Explorer


Theorem fssres

Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 23-Sep-2004)

Ref Expression
Assertion fssres F:ABCAFC:CB

Proof

Step Hyp Ref Expression
1 df-f F:ABFFnAranFB
2 fnssres FFnACAFCFnC
3 resss FCF
4 3 rnssi ranFCranF
5 sstr ranFCranFranFBranFCB
6 4 5 mpan ranFBranFCB
7 2 6 anim12i FFnACAranFBFCFnCranFCB
8 7 an32s FFnAranFBCAFCFnCranFCB
9 1 8 sylanb F:ABCAFCFnCranFCB
10 df-f FC:CBFCFnCranFCB
11 9 10 sylibr F:ABCAFC:CB