Description: If every term in one finite sum is less than the corresponding term in another, then the first sum is less than the second. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 3-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsumlt.1 | |
|
fsumlt.2 | |
||
fsumlt.3 | |
||
fsumlt.4 | |
||
fsumlt.5 | |
||
Assertion | fsumlt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumlt.1 | |
|
2 | fsumlt.2 | |
|
3 | fsumlt.3 | |
|
4 | fsumlt.4 | |
|
5 | fsumlt.5 | |
|
6 | difrp | |
|
7 | 3 4 6 | syl2anc | |
8 | 5 7 | mpbid | |
9 | 1 2 8 | fsumrpcl | |
10 | 9 | rpgt0d | |
11 | 4 | recnd | |
12 | 3 | recnd | |
13 | 1 11 12 | fsumsub | |
14 | 10 13 | breqtrd | |
15 | 1 3 | fsumrecl | |
16 | 1 4 | fsumrecl | |
17 | 15 16 | posdifd | |
18 | 14 17 | mpbird | |