Metamath Proof Explorer


Theorem fsumlt

Description: If every term in one finite sum is less than the corresponding term in another, then the first sum is less than the second. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 3-Jun-2014)

Ref Expression
Hypotheses fsumlt.1 φAFin
fsumlt.2 φA
fsumlt.3 φkAB
fsumlt.4 φkAC
fsumlt.5 φkAB<C
Assertion fsumlt φkAB<kAC

Proof

Step Hyp Ref Expression
1 fsumlt.1 φAFin
2 fsumlt.2 φA
3 fsumlt.3 φkAB
4 fsumlt.4 φkAC
5 fsumlt.5 φkAB<C
6 difrp BCB<CCB+
7 3 4 6 syl2anc φkAB<CCB+
8 5 7 mpbid φkACB+
9 1 2 8 fsumrpcl φkACB+
10 9 rpgt0d φ0<kACB
11 4 recnd φkAC
12 3 recnd φkAB
13 1 11 12 fsumsub φkACB=kACkAB
14 10 13 breqtrd φ0<kACkAB
15 1 3 fsumrecl φkAB
16 1 4 fsumrecl φkAC
17 15 16 posdifd φkAB<kAC0<kACkAB
18 14 17 mpbird φkAB<kAC