Metamath Proof Explorer


Theorem fsuppss

Description: A subset of a finitely supported function is a finitely supported function. (Contributed by SN, 8-Mar-2025)

Ref Expression
Hypotheses fsuppss.1 φFG
fsuppss.2 φfinSuppZG
Assertion fsuppss φfinSuppZF

Proof

Step Hyp Ref Expression
1 fsuppss.1 φFG
2 fsuppss.2 φfinSuppZG
3 relfsupp RelfinSupp
4 brrelex1 RelfinSuppfinSuppZGGV
5 3 2 4 sylancr φGV
6 5 1 ssexd φFV
7 brrelex2 RelfinSuppfinSuppZGZV
8 3 2 7 sylancr φZV
9 2 fsuppfund φFunG
10 funss FGFunGFunF
11 1 9 10 sylc φFunF
12 funsssuppss FunGFGGVFsuppZGsuppZ
13 9 1 5 12 syl3anc φFsuppZGsuppZ
14 6 8 11 2 13 fsuppsssuppgd φfinSuppZF