Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same faithful functors. (Contributed by Mario Carneiro, 27-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fullpropd.1 | |
|
fullpropd.2 | |
||
fullpropd.3 | |
||
fullpropd.4 | |
||
fullpropd.a | |
||
fullpropd.b | |
||
fullpropd.c | |
||
fullpropd.d | |
||
Assertion | fthpropd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fullpropd.1 | |
|
2 | fullpropd.2 | |
|
3 | fullpropd.3 | |
|
4 | fullpropd.4 | |
|
5 | fullpropd.a | |
|
6 | fullpropd.b | |
|
7 | fullpropd.c | |
|
8 | fullpropd.d | |
|
9 | relfth | |
|
10 | relfth | |
|
11 | 1 2 3 4 5 6 7 8 | funcpropd | |
12 | 11 | breqd | |
13 | 1 | homfeqbas | |
14 | 13 | raleqdv | |
15 | 13 14 | raleqbidv | |
16 | 12 15 | anbi12d | |
17 | eqid | |
|
18 | 17 | isfth | |
19 | eqid | |
|
20 | 19 | isfth | |
21 | 16 18 20 | 3bitr4g | |
22 | 9 10 21 | eqbrrdiv | |