Metamath Proof Explorer


Theorem fthres2

Description: A faithful functor into a restricted category is also a faithful functor into the whole category. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Assertion fthres2 RSubcatDCFaithDcatRCFaithD

Proof

Step Hyp Ref Expression
1 relfth RelCFaithDcatR
2 1 a1i RSubcatDRelCFaithDcatR
3 funcres2 RSubcatDCFuncDcatRCFuncD
4 3 ssbrd RSubcatDfCFuncDcatRgfCFuncDg
5 4 anim1d RSubcatDfCFuncDcatRgxBaseCyBaseCFunxgy-1fCFuncDgxBaseCyBaseCFunxgy-1
6 eqid BaseC=BaseC
7 6 isfth fCFaithDcatRgfCFuncDcatRgxBaseCyBaseCFunxgy-1
8 6 isfth fCFaithDgfCFuncDgxBaseCyBaseCFunxgy-1
9 5 7 8 3imtr4g RSubcatDfCFaithDcatRgfCFaithDg
10 df-br fCFaithDcatRgfgCFaithDcatR
11 df-br fCFaithDgfgCFaithD
12 9 10 11 3imtr3g RSubcatDfgCFaithDcatRfgCFaithD
13 2 12 relssdv RSubcatDCFaithDcatRCFaithD