Metamath Proof Explorer


Theorem fuccatid

Description: The functor category is a category. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses fuccat.q Q=CFuncCatD
fuccat.r φCCat
fuccat.s φDCat
fuccatid.1 1˙=IdD
Assertion fuccatid φQCatIdQ=fCFuncD1˙1stf

Proof

Step Hyp Ref Expression
1 fuccat.q Q=CFuncCatD
2 fuccat.r φCCat
3 fuccat.s φDCat
4 fuccatid.1 1˙=IdD
5 1 fucbas CFuncD=BaseQ
6 5 a1i φCFuncD=BaseQ
7 eqid CNatD=CNatD
8 1 7 fuchom CNatD=HomQ
9 8 a1i φCNatD=HomQ
10 eqidd φcompQ=compQ
11 1 ovexi QV
12 11 a1i φQV
13 biid eCFuncDfCFuncDgCFuncDhCFuncDreCNatDfsfCNatDgtgCNatDheCFuncDfCFuncDgCFuncDhCFuncDreCNatDfsfCNatDgtgCNatDh
14 simpr φfCFuncDfCFuncD
15 1 7 4 14 fucidcl φfCFuncD1˙1stffCNatDf
16 eqid compQ=compQ
17 simpr31 φeCFuncDfCFuncDgCFuncDhCFuncDreCNatDfsfCNatDgtgCNatDhreCNatDf
18 1 7 16 4 17 fuclid φeCFuncDfCFuncDgCFuncDhCFuncDreCNatDfsfCNatDgtgCNatDh1˙1stfefcompQfr=r
19 simpr32 φeCFuncDfCFuncDgCFuncDhCFuncDreCNatDfsfCNatDgtgCNatDhsfCNatDg
20 1 7 16 4 19 fucrid φeCFuncDfCFuncDgCFuncDhCFuncDreCNatDfsfCNatDgtgCNatDhsffcompQg1˙1stf=s
21 1 7 16 17 19 fuccocl φeCFuncDfCFuncDgCFuncDhCFuncDreCNatDfsfCNatDgtgCNatDhsefcompQgreCNatDg
22 simpr33 φeCFuncDfCFuncDgCFuncDhCFuncDreCNatDfsfCNatDgtgCNatDhtgCNatDh
23 1 7 16 17 19 22 fucass φeCFuncDfCFuncDgCFuncDhCFuncDreCNatDfsfCNatDgtgCNatDhtfgcompQhsefcompQhr=tegcompQhsefcompQgr
24 6 9 10 12 13 15 18 20 21 23 iscatd2 φQCatIdQ=fCFuncD1˙1stf