Metamath Proof Explorer


Theorem fuclid

Description: Left identity of natural transformations. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses fuclid.q Q=CFuncCatD
fuclid.n N=CNatD
fuclid.x ˙=compQ
fuclid.1 1˙=IdD
fuclid.r φRFNG
Assertion fuclid φ1˙1stGFG˙GR=R

Proof

Step Hyp Ref Expression
1 fuclid.q Q=CFuncCatD
2 fuclid.n N=CNatD
3 fuclid.x ˙=compQ
4 fuclid.1 1˙=IdD
5 fuclid.r φRFNG
6 eqid BaseC=BaseC
7 eqid BaseD=BaseD
8 relfunc RelCFuncD
9 2 natrcl RFNGFCFuncDGCFuncD
10 5 9 syl φFCFuncDGCFuncD
11 10 simprd φGCFuncD
12 1st2ndbr RelCFuncDGCFuncD1stGCFuncD2ndG
13 8 11 12 sylancr φ1stGCFuncD2ndG
14 6 7 13 funcf1 φ1stG:BaseCBaseD
15 fvco3 1stG:BaseCBaseDxBaseC1˙1stGx=1˙1stGx
16 14 15 sylan φxBaseC1˙1stGx=1˙1stGx
17 16 oveq1d φxBaseC1˙1stGx1stFx1stGxcompD1stGxRx=1˙1stGx1stFx1stGxcompD1stGxRx
18 eqid HomD=HomD
19 10 simpld φFCFuncD
20 funcrcl FCFuncDCCatDCat
21 19 20 syl φCCatDCat
22 21 simprd φDCat
23 22 adantr φxBaseCDCat
24 1st2ndbr RelCFuncDFCFuncD1stFCFuncD2ndF
25 8 19 24 sylancr φ1stFCFuncD2ndF
26 6 7 25 funcf1 φ1stF:BaseCBaseD
27 26 ffvelcdmda φxBaseC1stFxBaseD
28 eqid compD=compD
29 14 ffvelcdmda φxBaseC1stGxBaseD
30 2 5 nat1st2nd φR1stF2ndFN1stG2ndG
31 30 adantr φxBaseCR1stF2ndFN1stG2ndG
32 simpr φxBaseCxBaseC
33 2 31 6 18 32 natcl φxBaseCRx1stFxHomD1stGx
34 7 18 4 23 27 28 29 33 catlid φxBaseC1˙1stGx1stFx1stGxcompD1stGxRx=Rx
35 17 34 eqtrd φxBaseC1˙1stGx1stFx1stGxcompD1stGxRx=Rx
36 35 mpteq2dva φxBaseC1˙1stGx1stFx1stGxcompD1stGxRx=xBaseCRx
37 1 2 4 11 fucidcl φ1˙1stGGNG
38 1 2 6 28 3 5 37 fucco φ1˙1stGFG˙GR=xBaseC1˙1stGx1stFx1stGxcompD1stGxRx
39 2 30 6 natfn φRFnBaseC
40 dffn5 RFnBaseCR=xBaseCRx
41 39 40 sylib φR=xBaseCRx
42 36 38 41 3eqtr4d φ1˙1stGFG˙GR=R