Description: The identity natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fucidcl.q | |
|
fucidcl.n | |
||
fucidcl.x | |
||
fucidcl.f | |
||
Assertion | fucidcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fucidcl.q | |
|
2 | fucidcl.n | |
|
3 | fucidcl.x | |
|
4 | fucidcl.f | |
|
5 | funcrcl | |
|
6 | 4 5 | syl | |
7 | 6 | simprd | |
8 | eqid | |
|
9 | 8 3 | cidfn | |
10 | 7 9 | syl | |
11 | dffn2 | |
|
12 | 10 11 | sylib | |
13 | eqid | |
|
14 | relfunc | |
|
15 | 1st2ndbr | |
|
16 | 14 4 15 | sylancr | |
17 | 13 8 16 | funcf1 | |
18 | fcompt | |
|
19 | 12 17 18 | syl2anc | |
20 | eqid | |
|
21 | 7 | adantr | |
22 | 17 | ffvelcdmda | |
23 | 8 20 3 21 22 | catidcl | |
24 | 23 | ralrimiva | |
25 | fvex | |
|
26 | mptelixpg | |
|
27 | 25 26 | ax-mp | |
28 | 24 27 | sylibr | |
29 | 19 28 | eqeltrd | |
30 | 7 | adantr | |
31 | simpr1 | |
|
32 | 31 22 | syldan | |
33 | eqid | |
|
34 | 17 | adantr | |
35 | simpr2 | |
|
36 | 34 35 | ffvelcdmd | |
37 | eqid | |
|
38 | 16 | adantr | |
39 | 13 37 20 38 31 35 | funcf2 | |
40 | simpr3 | |
|
41 | 39 40 | ffvelcdmd | |
42 | 8 20 3 30 32 33 36 41 | catlid | |
43 | 8 20 3 30 32 33 36 41 | catrid | |
44 | 42 43 | eqtr4d | |
45 | fvco3 | |
|
46 | 34 35 45 | syl2anc | |
47 | 46 | oveq1d | |
48 | fvco3 | |
|
49 | 34 31 48 | syl2anc | |
50 | 49 | oveq2d | |
51 | 44 47 50 | 3eqtr4d | |
52 | 51 | ralrimivvva | |
53 | 2 13 37 20 33 4 4 | isnat2 | |
54 | 29 52 53 | mpbir2and | |