| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fucidcl.q |
|
| 2 |
|
fucidcl.n |
|
| 3 |
|
fucidcl.x |
|
| 4 |
|
fucidcl.f |
|
| 5 |
|
funcrcl |
|
| 6 |
4 5
|
syl |
|
| 7 |
6
|
simprd |
|
| 8 |
|
eqid |
|
| 9 |
8 3
|
cidfn |
|
| 10 |
7 9
|
syl |
|
| 11 |
|
dffn2 |
|
| 12 |
10 11
|
sylib |
|
| 13 |
|
eqid |
|
| 14 |
|
relfunc |
|
| 15 |
|
1st2ndbr |
|
| 16 |
14 4 15
|
sylancr |
|
| 17 |
13 8 16
|
funcf1 |
|
| 18 |
|
fcompt |
|
| 19 |
12 17 18
|
syl2anc |
|
| 20 |
|
eqid |
|
| 21 |
7
|
adantr |
|
| 22 |
17
|
ffvelcdmda |
|
| 23 |
8 20 3 21 22
|
catidcl |
|
| 24 |
23
|
ralrimiva |
|
| 25 |
|
fvex |
|
| 26 |
|
mptelixpg |
|
| 27 |
25 26
|
ax-mp |
|
| 28 |
24 27
|
sylibr |
|
| 29 |
19 28
|
eqeltrd |
|
| 30 |
7
|
adantr |
|
| 31 |
|
simpr1 |
|
| 32 |
31 22
|
syldan |
|
| 33 |
|
eqid |
|
| 34 |
17
|
adantr |
|
| 35 |
|
simpr2 |
|
| 36 |
34 35
|
ffvelcdmd |
|
| 37 |
|
eqid |
|
| 38 |
16
|
adantr |
|
| 39 |
13 37 20 38 31 35
|
funcf2 |
|
| 40 |
|
simpr3 |
|
| 41 |
39 40
|
ffvelcdmd |
|
| 42 |
8 20 3 30 32 33 36 41
|
catlid |
|
| 43 |
8 20 3 30 32 33 36 41
|
catrid |
|
| 44 |
42 43
|
eqtr4d |
|
| 45 |
|
fvco3 |
|
| 46 |
34 35 45
|
syl2anc |
|
| 47 |
46
|
oveq1d |
|
| 48 |
|
fvco3 |
|
| 49 |
34 31 48
|
syl2anc |
|
| 50 |
49
|
oveq2d |
|
| 51 |
44 47 50
|
3eqtr4d |
|
| 52 |
51
|
ralrimivvva |
|
| 53 |
2 13 37 20 33 4 4
|
isnat2 |
|
| 54 |
29 52 53
|
mpbir2and |
|