Metamath Proof Explorer


Theorem fuco11

Description: The object part of the functor composition bifunctor maps two functors to their composition. (Contributed by Zhi Wang, 30-Sep-2025)

Ref Expression
Hypotheses fuco11.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fuco11.f φ F C Func D G
fuco11.k φ K D Func E L
fuco11.u φ U = K L F G
Assertion fuco11 φ O U = K L func F G

Proof

Step Hyp Ref Expression
1 fuco11.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
2 fuco11.f φ F C Func D G
3 fuco11.k φ K D Func E L
4 fuco11.u φ U = K L F G
5 2 funcrcl2 φ C Cat
6 3 funcrcl2 φ D Cat
7 3 funcrcl3 φ E Cat
8 eqidd φ D Func E × C Func D = D Func E × C Func D
9 5 6 7 1 8 fuco1 φ O = func D Func E × C Func D
10 9 fveq1d φ O U = func D Func E × C Func D U
11 8 4 3 2 fuco2eld φ U D Func E × C Func D
12 11 fvresd φ func D Func E × C Func D U = func U
13 4 fveq2d φ func U = func K L F G
14 df-ov K L func F G = func K L F G
15 13 14 eqtr4di φ func U = K L func F G
16 10 12 15 3eqtrd φ O U = K L func F G