Metamath Proof Explorer


Theorem fuco111

Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the object part of the composed functor. (Contributed by Zhi Wang, 2-Oct-2025)

Ref Expression
Hypotheses fuco11.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fuco11.f φ F C Func D G
fuco11.k φ K D Func E L
fuco11.u φ U = K L F G
Assertion fuco111 φ 1 st O U = K F

Proof

Step Hyp Ref Expression
1 fuco11.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
2 fuco11.f φ F C Func D G
3 fuco11.k φ K D Func E L
4 fuco11.u φ U = K L F G
5 eqid Base C = Base C
6 1 2 3 4 5 fuco11a φ O U = K F x Base C , y Base C F x L F y x G y
7 6 fveq2d φ 1 st O U = 1 st K F x Base C , y Base C F x L F y x G y
8 relfunc Rel D Func E
9 8 brrelex1i K D Func E L K V
10 3 9 syl φ K V
11 relfunc Rel C Func D
12 11 brrelex1i F C Func D G F V
13 2 12 syl φ F V
14 10 13 coexd φ K F V
15 fvex Base C V
16 15 15 mpoex x Base C , y Base C F x L F y x G y V
17 op1stg K F V x Base C , y Base C F x L F y x G y V 1 st K F x Base C , y Base C F x L F y x G y = K F
18 14 16 17 sylancl φ 1 st K F x Base C , y Base C F x L F y x G y = K F
19 7 18 eqtrd φ 1 st O U = K F