Metamath Proof Explorer


Theorem fuco22

Description: The morphism part of the functor composition bifunctor. See also fuco22a . (Contributed by Zhi Wang, 29-Sep-2025)

Ref Expression
Hypotheses fuco22.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fuco22.u φ U = K L F G
fuco22.v φ V = R S M N
fuco22.a φ A F G C Nat D M N
fuco22.b φ B K L D Nat E R S
Assertion fuco22 φ B U P V A = x Base C B M x K F x K M x comp E R M x F x L M x A x

Proof

Step Hyp Ref Expression
1 fuco22.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
2 fuco22.u φ U = K L F G
3 fuco22.v φ V = R S M N
4 fuco22.a φ A F G C Nat D M N
5 fuco22.b φ B K L D Nat E R S
6 eqid C Nat D = C Nat D
7 6 4 natrcl2 φ F C Func D G
8 eqid D Nat E = D Nat E
9 8 5 natrcl2 φ K D Func E L
10 6 4 natrcl3 φ M C Func D N
11 8 5 natrcl3 φ R D Func E S
12 1 7 9 2 10 11 3 fuco21 φ U P V = b K L D Nat E R S , a F G C Nat D M N x Base C b M x K F x K M x comp E R M x F x L M x a x
13 simplrl φ b = B a = A x Base C b = B
14 13 fveq1d φ b = B a = A x Base C b M x = B M x
15 simplrr φ b = B a = A x Base C a = A
16 15 fveq1d φ b = B a = A x Base C a x = A x
17 16 fveq2d φ b = B a = A x Base C F x L M x a x = F x L M x A x
18 14 17 oveq12d φ b = B a = A x Base C b M x K F x K M x comp E R M x F x L M x a x = B M x K F x K M x comp E R M x F x L M x A x
19 18 mpteq2dva φ b = B a = A x Base C b M x K F x K M x comp E R M x F x L M x a x = x Base C B M x K F x K M x comp E R M x F x L M x A x
20 fvexd φ Base C V
21 20 mptexd φ x Base C B M x K F x K M x comp E R M x F x L M x A x V
22 12 19 5 4 21 ovmpod φ B U P V A = x Base C B M x K F x K M x comp E R M x F x L M x A x