Metamath Proof Explorer
		
		
		
		Description:  Lemma for proving functor theorems.  (Contributed by Zhi Wang, 25-Sep-2025)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						fucofulem1.1 | 
						   | 
					
					
						 | 
						 | 
						fucofulem1.2 | 
						   | 
					
					
						 | 
						 | 
						fucofulem1.3 | 
						   | 
					
					
						 | 
						 | 
						fucofulem1.4 | 
						   | 
					
					
						 | 
						 | 
						fucofulem1.5 | 
						   | 
					
				
					 | 
					Assertion | 
					fucofulem1 | 
					   | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fucofulem1.1 | 
							   | 
						
						
							| 2 | 
							
								
							 | 
							fucofulem1.2 | 
							   | 
						
						
							| 3 | 
							
								
							 | 
							fucofulem1.3 | 
							   | 
						
						
							| 4 | 
							
								
							 | 
							fucofulem1.4 | 
							   | 
						
						
							| 5 | 
							
								
							 | 
							fucofulem1.5 | 
							   | 
						
						
							| 6 | 
							
								
							 | 
							simpl | 
							   | 
						
						
							| 7 | 
							
								1
							 | 
							biimpa | 
							   | 
						
						
							| 8 | 
							
								7
							 | 
							simp2d | 
							   | 
						
						
							| 9 | 
							
								7
							 | 
							simp3d | 
							   | 
						
						
							| 10 | 
							
								6 8 9 2
							 | 
							syl12anc | 
							   | 
						
						
							| 11 | 
							
								
							 | 
							simpl | 
							   | 
						
						
							| 12 | 
							
								3
							 | 
							a1i | 
							   | 
						
						
							| 13 | 
							
								1
							 | 
							biimpar | 
							   | 
						
						
							| 14 | 
							
								11 12 4 5 13
							 | 
							syl13anc | 
							   | 
						
						
							| 15 | 
							
								10 14
							 | 
							impbida | 
							   |