Metamath Proof Explorer


Theorem fucoppcffth

Description: A fully faithful functor from the opposite category of functors to the category of opposite functors. (Contributed by Zhi Wang, 19-Nov-2025)

Ref Expression
Hypotheses fucoppc.o O = oppCat C
fucoppc.p P = oppCat D
fucoppc.q Q = C FuncCat D
fucoppc.r R = oppCat Q
fucoppc.s S = O FuncCat P
fucoppc.n N = C Nat D
fucoppc.f No typesetting found for |- ( ph -> F = ( oppFunc |` ( C Func D ) ) ) with typecode |-
fucoppc.g φ G = x C Func D , y C Func D I y N x
fucoppcffth.c φ C Cat
fucoppcffth.d φ D Cat
Assertion fucoppcffth φ F R Full S R Faith S G

Proof

Step Hyp Ref Expression
1 fucoppc.o O = oppCat C
2 fucoppc.p P = oppCat D
3 fucoppc.q Q = C FuncCat D
4 fucoppc.r R = oppCat Q
5 fucoppc.s S = O FuncCat P
6 fucoppc.n N = C Nat D
7 fucoppc.f Could not format ( ph -> F = ( oppFunc |` ( C Func D ) ) ) : No typesetting found for |- ( ph -> F = ( oppFunc |` ( C Func D ) ) ) with typecode |-
8 fucoppc.g φ G = x C Func D , y C Func D I y N x
9 fucoppcffth.c φ C Cat
10 fucoppcffth.d φ D Cat
11 eqid CatCat R S = CatCat R S
12 eqid Base R = Base R
13 eqid Base S = Base S
14 eqid Iso CatCat R S = Iso CatCat R S
15 eqid Base CatCat R S = Base CatCat R S
16 3 9 10 fuccat φ Q Cat
17 4 oppccat Q Cat R Cat
18 16 17 syl φ R Cat
19 prid1g R Cat R R S
20 18 19 syl φ R R S
21 20 18 elind φ R R S Cat
22 prex R S V
23 22 a1i φ R S V
24 11 15 23 catcbas φ Base CatCat R S = R S Cat
25 21 24 eleqtrrd φ R Base CatCat R S
26 1 oppccat C Cat O Cat
27 9 26 syl φ O Cat
28 2 oppccat D Cat P Cat
29 10 28 syl φ P Cat
30 5 27 29 fuccat φ S Cat
31 prid2g S Cat S R S
32 30 31 syl φ S R S
33 32 30 elind φ S R S Cat
34 33 24 eleqtrrd φ S Base CatCat R S
35 1 2 3 4 5 6 7 8 11 15 14 9 10 25 34 fucoppc φ F R Iso CatCat R S S G
36 df-br F R Iso CatCat R S S G F G R Iso CatCat R S S
37 35 36 sylib φ F G R Iso CatCat R S S
38 11 12 13 14 37 catcisoi φ F G R Full S R Faith S 1 st F G : Base R 1-1 onto Base S
39 38 simpld φ F G R Full S R Faith S
40 df-br F R Full S R Faith S G F G R Full S R Faith S
41 39 40 sylibr φ F R Full S R Faith S G