Metamath Proof Explorer


Theorem fullfunc

Description: A full functor is a functor. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Assertion fullfunc CFullDCFuncD

Proof

Step Hyp Ref Expression
1 oveq1 c=CcFulld=CFulld
2 oveq1 c=CcFuncd=CFuncd
3 1 2 sseq12d c=CcFulldcFuncdCFulldCFuncd
4 oveq2 d=DCFulld=CFullD
5 oveq2 d=DCFuncd=CFuncD
6 4 5 sseq12d d=DCFulldCFuncdCFullDCFuncD
7 ovex cFuncdV
8 simpl fcFuncdgxBasecyBasecranxgy=fxHomdfyfcFuncdg
9 8 ssopab2i fg|fcFuncdgxBasecyBasecranxgy=fxHomdfyfg|fcFuncdg
10 opabss fg|fcFuncdgcFuncd
11 9 10 sstri fg|fcFuncdgxBasecyBasecranxgy=fxHomdfycFuncd
12 7 11 ssexi fg|fcFuncdgxBasecyBasecranxgy=fxHomdfyV
13 df-full Full=cCat,dCatfg|fcFuncdgxBasecyBasecranxgy=fxHomdfy
14 13 ovmpt4g cCatdCatfg|fcFuncdgxBasecyBasecranxgy=fxHomdfyVcFulld=fg|fcFuncdgxBasecyBasecranxgy=fxHomdfy
15 12 14 mp3an3 cCatdCatcFulld=fg|fcFuncdgxBasecyBasecranxgy=fxHomdfy
16 15 11 eqsstrdi cCatdCatcFulldcFuncd
17 3 6 16 vtocl2ga CCatDCatCFullDCFuncD
18 13 mpondm0 ¬CCatDCatCFullD=
19 0ss CFuncD
20 18 19 eqsstrdi ¬CCatDCatCFullDCFuncD
21 17 20 pm2.61i CFullDCFuncD