Metamath Proof Explorer


Theorem fulltermc

Description: A functor to a terminal category is full iff all hom-sets of the source category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025)

Ref Expression
Hypotheses fulltermc.b B = Base C
fulltermc.h H = Hom C
fulltermc.d No typesetting found for |- ( ph -> D e. TermCat ) with typecode |-
fulltermc.f φ F C Func D G
Assertion fulltermc φ F C Full D G x B y B ¬ x H y =

Proof

Step Hyp Ref Expression
1 fulltermc.b B = Base C
2 fulltermc.h H = Hom C
3 fulltermc.d Could not format ( ph -> D e. TermCat ) : No typesetting found for |- ( ph -> D e. TermCat ) with typecode |-
4 fulltermc.f φ F C Func D G
5 eqid Hom D = Hom D
6 3 termcthind φ D ThinCat
7 1 5 2 6 4 fullthinc φ F C Full D G x B y B x H y = F x Hom D F y =
8 3 adantr Could not format ( ( ph /\ ( x e. B /\ y e. B ) ) -> D e. TermCat ) : No typesetting found for |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> D e. TermCat ) with typecode |-
9 eqid Base D = Base D
10 1 9 4 funcf1 φ F : B Base D
11 10 ffvelcdmda φ x B F x Base D
12 11 adantrr φ x B y B F x Base D
13 10 ffvelcdmda φ y B F y Base D
14 13 adantrl φ x B y B F y Base D
15 8 9 12 14 5 termchomn0 φ x B y B ¬ F x Hom D F y =
16 biimt ¬ F x Hom D F y = ¬ x H y = ¬ F x Hom D F y = ¬ x H y =
17 15 16 syl φ x B y B ¬ x H y = ¬ F x Hom D F y = ¬ x H y =
18 con34b x H y = F x Hom D F y = ¬ F x Hom D F y = ¬ x H y =
19 17 18 bitr4di φ x B y B ¬ x H y = x H y = F x Hom D F y =
20 19 2ralbidva φ x B y B ¬ x H y = x B y B x H y = F x Hom D F y =
21 7 20 bitr4d φ F C Full D G x B y B ¬ x H y =