Metamath Proof Explorer


Theorem funbrafv22b

Description: Equivalence of function value and binary relation, analogous to funbrfvb . (Contributed by AV, 6-Sep-2022)

Ref Expression
Assertion funbrafv22b FunFAdomFF''''A=BAFB

Proof

Step Hyp Ref Expression
1 funfn FunFFFndomF
2 fnbrafv2b FFndomFAdomFF''''A=BAFB
3 1 2 sylanb FunFAdomFF''''A=BAFB