Metamath Proof Explorer


Theorem funbrafvb

Description: Equivalence of function value and binary relation, analogous to funbrfvb . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion funbrafvb Fun F A dom F F ''' A = B A F B

Proof

Step Hyp Ref Expression
1 funfn Fun F F Fn dom F
2 fnbrafvb F Fn dom F A dom F F ''' A = B A F B
3 1 2 sylanb Fun F A dom F F ''' A = B A F B