Metamath Proof Explorer


Theorem funbrafvb

Description: Equivalence of function value and binary relation, analogous to funbrfvb . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion funbrafvb FunFAdomFF'''A=BAFB

Proof

Step Hyp Ref Expression
1 funfn FunFFFndomF
2 fnbrafvb FFndomFAdomFF'''A=BAFB
3 1 2 sylanb FunFAdomFF'''A=BAFB