Metamath Proof Explorer


Theorem funcsetcestrclem4

Description: Lemma 4 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses funcsetcestrc.s S=SetCatU
funcsetcestrc.c C=BaseS
funcsetcestrc.f φF=xCBasendxx
funcsetcestrc.u φUWUni
funcsetcestrc.o φωU
funcsetcestrc.g φG=xC,yCIyx
Assertion funcsetcestrclem4 φGFnC×C

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s S=SetCatU
2 funcsetcestrc.c C=BaseS
3 funcsetcestrc.f φF=xCBasendxx
4 funcsetcestrc.u φUWUni
5 funcsetcestrc.o φωU
6 funcsetcestrc.g φG=xC,yCIyx
7 eqid xC,yCIyx=xC,yCIyx
8 ovex yxV
9 resiexg yxVIyxV
10 8 9 ax-mp IyxV
11 7 10 fnmpoi xC,yCIyxFnC×C
12 6 fneq1d φGFnC×CxC,yCIyxFnC×C
13 11 12 mpbiri φGFnC×C