Metamath Proof Explorer


Theorem funfn

Description: A class is a function if and only if it is a function on its domain. (Contributed by NM, 13-Aug-2004)

Ref Expression
Assertion funfn FunAAFndomA

Proof

Step Hyp Ref Expression
1 eqid domA=domA
2 1 biantru FunAFunAdomA=domA
3 df-fn AFndomAFunAdomA=domA
4 2 3 bitr4i FunAAFndomA