Metamath Proof Explorer


Theorem funopafvb

Description: Equivalence of function value and ordered pair membership, analogous to funopfvb . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion funopafvb FunFAdomFF'''A=BABF

Proof

Step Hyp Ref Expression
1 funfn FunFFFndomF
2 fnopafvb FFndomFAdomFF'''A=BABF
3 1 2 sylanb FunFAdomFF'''A=BABF