Metamath Proof Explorer


Theorem funressndmfvrn

Description: The value of a function F at a set A is in the range of the function F if A is in the domain of the function F . It is sufficient that F is a function at A . (Contributed by AV, 1-Sep-2022)

Ref Expression
Assertion funressndmfvrn FunFAAdomFFAranF

Proof

Step Hyp Ref Expression
1 simpr FunFAAdomFAdomF
2 fvressn AdomFFAA=FA
3 2 adantl FunFAAdomFFAA=FA
4 eldmressnsn AdomFAdomFA
5 fvelrn FunFAAdomFAFAAranFA
6 4 5 sylan2 FunFAAdomFFAAranFA
7 3 6 eqeltrrd FunFAAdomFFAranFA
8 fvrnressn AdomFFAranFAFAranF
9 1 7 8 sylc FunFAAdomFFAranF