Metamath Proof Explorer


Theorem funressnmo

Description: A function restricted to a singleton has at most one value for the singleton element as argument. (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion funressnmo AVFunFA*yAFy

Proof

Step Hyp Ref Expression
1 sneq x=Ax=A
2 1 reseq2d x=AFx=FA
3 2 funeqd x=AFunFxFunFA
4 breq1 x=AxFyAFy
5 4 mobidv x=A*yxFy*yAFy
6 3 5 imbi12d x=AFunFx*yxFyFunFA*yAFy
7 funressnvmo FunFx*yxFy
8 6 7 vtoclg AVFunFA*yAFy
9 8 imp AVFunFA*yAFy