Metamath Proof Explorer


Theorem funsseq

Description: Given two functions with equal domains, equality only requires one direction of the subset relationship. (Contributed by Scott Fenton, 24-Apr-2012) (Proof shortened by Mario Carneiro, 3-May-2015)

Ref Expression
Assertion funsseq Fun F Fun G dom F = dom G F = G F G

Proof

Step Hyp Ref Expression
1 eqimss F = G F G
2 simpl3 Fun F Fun G dom F = dom G F G dom F = dom G
3 2 reseq2d Fun F Fun G dom F = dom G F G G dom F = G dom G
4 funssres Fun G F G G dom F = F
5 4 3ad2antl2 Fun F Fun G dom F = dom G F G G dom F = F
6 simpl2 Fun F Fun G dom F = dom G F G Fun G
7 funrel Fun G Rel G
8 resdm Rel G G dom G = G
9 6 7 8 3syl Fun F Fun G dom F = dom G F G G dom G = G
10 3 5 9 3eqtr3d Fun F Fun G dom F = dom G F G F = G
11 10 ex Fun F Fun G dom F = dom G F G F = G
12 1 11 impbid2 Fun F Fun G dom F = dom G F = G F G