Metamath Proof Explorer


Theorem funsseq

Description: Given two functions with equal domains, equality only requires one direction of the subset relationship. (Contributed by Scott Fenton, 24-Apr-2012) (Proof shortened by Mario Carneiro, 3-May-2015)

Ref Expression
Assertion funsseq FunFFunGdomF=domGF=GFG

Proof

Step Hyp Ref Expression
1 eqimss F=GFG
2 simpl3 FunFFunGdomF=domGFGdomF=domG
3 2 reseq2d FunFFunGdomF=domGFGGdomF=GdomG
4 funssres FunGFGGdomF=F
5 4 3ad2antl2 FunFFunGdomF=domGFGGdomF=F
6 simpl2 FunFFunGdomF=domGFGFunG
7 funrel FunGRelG
8 resdm RelGGdomG=G
9 6 7 8 3syl FunFFunGdomF=domGFGGdomG=G
10 3 5 9 3eqtr3d FunFFunGdomF=domGFGF=G
11 10 ex FunFFunGdomF=domGFGF=G
12 1 11 impbid2 FunFFunGdomF=domGF=GFG