Metamath Proof Explorer


Theorem fusgreg2wsplem

Description: Lemma for fusgreg2wsp and related theorems. (Contributed by AV, 8-Jan-2022)

Ref Expression
Hypotheses frgrhash2wsp.v V=VtxG
fusgreg2wsp.m M=aVw2WSPathsNG|w1=a
Assertion fusgreg2wsplem NVpMNp2WSPathsNGp1=N

Proof

Step Hyp Ref Expression
1 frgrhash2wsp.v V=VtxG
2 fusgreg2wsp.m M=aVw2WSPathsNG|w1=a
3 eqeq2 a=Nw1=aw1=N
4 3 rabbidv a=Nw2WSPathsNG|w1=a=w2WSPathsNG|w1=N
5 ovex 2WSPathsNGV
6 5 rabex w2WSPathsNG|w1=NV
7 4 2 6 fvmpt NVMN=w2WSPathsNG|w1=N
8 7 eleq2d NVpMNpw2WSPathsNG|w1=N
9 fveq1 w=pw1=p1
10 9 eqeq1d w=pw1=Np1=N
11 10 elrab pw2WSPathsNG|w1=Np2WSPathsNGp1=N
12 8 11 bitrdi NVpMNp2WSPathsNGp1=N