Metamath Proof Explorer


Theorem fv1arycl

Description: Closure of a unary (endo)function. (Contributed by AV, 18-May-2024)

Ref Expression
Assertion fv1arycl G 1 -aryF X A X G 0 A X

Proof

Step Hyp Ref Expression
1 eqid 0 ..^ 1 = 0 ..^ 1
2 1 naryrcl G 1 -aryF X 1 0 X V
3 1aryfvalel X V G 1 -aryF X G : X 0 X
4 simp2 X V G : X 0 X A X G : X 0 X
5 c0ex 0 V
6 5 a1i X V G : X 0 X A X 0 V
7 simp3 X V G : X 0 X A X A X
8 6 7 fsnd X V G : X 0 X A X 0 A : 0 X
9 simp1 X V G : X 0 X A X X V
10 snex 0 V
11 10 a1i X V G : X 0 X A X 0 V
12 9 11 elmapd X V G : X 0 X A X 0 A X 0 0 A : 0 X
13 8 12 mpbird X V G : X 0 X A X 0 A X 0
14 4 13 ffvelcdmd X V G : X 0 X A X G 0 A X
15 14 3exp X V G : X 0 X A X G 0 A X
16 3 15 sylbid X V G 1 -aryF X A X G 0 A X
17 16 adantl 1 0 X V G 1 -aryF X A X G 0 A X
18 2 17 mpcom G 1 -aryF X A X G 0 A X
19 18 imp G 1 -aryF X A X G 0 A X