Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Complexity theory
N-ary functions
fv1arycl
Next ⟩
1arympt1
Metamath Proof Explorer
Ascii
Unicode
Theorem
fv1arycl
Description:
Closure of a unary (endo)function.
(Contributed by
AV
, 18-May-2024)
Ref
Expression
Assertion
fv1arycl
⊢
G
∈
1
-aryF
X
∧
A
∈
X
→
G
⁡
0
A
∈
X
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
0
..^
1
=
0
..^
1
2
1
naryrcl
⊢
G
∈
1
-aryF
X
→
1
∈
ℕ
0
∧
X
∈
V
3
1aryfvalel
⊢
X
∈
V
→
G
∈
1
-aryF
X
↔
G
:
X
0
⟶
X
4
simp2
⊢
X
∈
V
∧
G
:
X
0
⟶
X
∧
A
∈
X
→
G
:
X
0
⟶
X
5
c0ex
⊢
0
∈
V
6
5
a1i
⊢
X
∈
V
∧
G
:
X
0
⟶
X
∧
A
∈
X
→
0
∈
V
7
simp3
⊢
X
∈
V
∧
G
:
X
0
⟶
X
∧
A
∈
X
→
A
∈
X
8
6
7
fsnd
⊢
X
∈
V
∧
G
:
X
0
⟶
X
∧
A
∈
X
→
0
A
:
0
⟶
X
9
simp1
⊢
X
∈
V
∧
G
:
X
0
⟶
X
∧
A
∈
X
→
X
∈
V
10
snex
⊢
0
∈
V
11
10
a1i
⊢
X
∈
V
∧
G
:
X
0
⟶
X
∧
A
∈
X
→
0
∈
V
12
9
11
elmapd
⊢
X
∈
V
∧
G
:
X
0
⟶
X
∧
A
∈
X
→
0
A
∈
X
0
↔
0
A
:
0
⟶
X
13
8
12
mpbird
⊢
X
∈
V
∧
G
:
X
0
⟶
X
∧
A
∈
X
→
0
A
∈
X
0
14
4
13
ffvelcdmd
⊢
X
∈
V
∧
G
:
X
0
⟶
X
∧
A
∈
X
→
G
⁡
0
A
∈
X
15
14
3exp
⊢
X
∈
V
→
G
:
X
0
⟶
X
→
A
∈
X
→
G
⁡
0
A
∈
X
16
3
15
sylbid
⊢
X
∈
V
→
G
∈
1
-aryF
X
→
A
∈
X
→
G
⁡
0
A
∈
X
17
16
adantl
⊢
1
∈
ℕ
0
∧
X
∈
V
→
G
∈
1
-aryF
X
→
A
∈
X
→
G
⁡
0
A
∈
X
18
2
17
mpcom
⊢
G
∈
1
-aryF
X
→
A
∈
X
→
G
⁡
0
A
∈
X
19
18
imp
⊢
G
∈
1
-aryF
X
∧
A
∈
X
→
G
⁡
0
A
∈
X