Metamath Proof Explorer


Theorem fvco

Description: Value of a function composition. Similar to Exercise 5 of TakeutiZaring p. 28. (Contributed by NM, 22-Apr-2006) (Proof shortened by Mario Carneiro, 26-Dec-2014)

Ref Expression
Assertion fvco FunGAdomGFGA=FGA

Proof

Step Hyp Ref Expression
1 funfn FunGGFndomG
2 fvco2 GFndomGAdomGFGA=FGA
3 1 2 sylanb FunGAdomGFGA=FGA