Metamath Proof Explorer


Theorem fvco3

Description: Value of a function composition. (Contributed by NM, 3-Jan-2004) (Revised by Mario Carneiro, 26-Dec-2014)

Ref Expression
Assertion fvco3 G:ABCAFGC=FGC

Proof

Step Hyp Ref Expression
1 ffn G:ABGFnA
2 fvco2 GFnACAFGC=FGC
3 1 2 sylan G:ABCAFGC=FGC