Metamath Proof Explorer


Theorem fvmptf

Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses fvmptf.1 _xA
fvmptf.2 _xC
fvmptf.3 x=AB=C
fvmptf.4 F=xDB
Assertion fvmptf ADCVFA=C

Proof

Step Hyp Ref Expression
1 fvmptf.1 _xA
2 fvmptf.2 _xC
3 fvmptf.3 x=AB=C
4 fvmptf.4 F=xDB
5 2 nfel1 xCV
6 nfmpt1 _xxDB
7 4 6 nfcxfr _xF
8 7 1 nffv _xFA
9 8 2 nfeq xFA=C
10 5 9 nfim xCVFA=C
11 3 eleq1d x=ABVCV
12 fveq2 x=AFx=FA
13 12 3 eqeq12d x=AFx=BFA=C
14 11 13 imbi12d x=ABVFx=BCVFA=C
15 4 fvmpt2 xDBVFx=B
16 15 ex xDBVFx=B
17 1 10 14 16 vtoclgaf ADCVFA=C
18 elex CVCV
19 17 18 impel ADCVFA=C