Metamath Proof Explorer


Theorem fvmptg

Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypotheses fvmptg.1 x=AB=C
fvmptg.2 F=xDB
Assertion fvmptg ADCRFA=C

Proof

Step Hyp Ref Expression
1 fvmptg.1 x=AB=C
2 fvmptg.2 F=xDB
3 eqid C=C
4 1 eqeq2d x=Ay=By=C
5 eqeq1 y=Cy=CC=C
6 moeq *yy=B
7 6 a1i xD*yy=B
8 df-mpt xDB=xy|xDy=B
9 2 8 eqtri F=xy|xDy=B
10 4 5 7 9 fvopab3ig ADCRC=CFA=C
11 3 10 mpi ADCRFA=C