Metamath Proof Explorer


Theorem fvmptopab

Description: The function value of a mapping M to a restricted binary relation expressed as an ordered-pair class abstraction: The restricted binary relation is a binary relation given as value of a function F restricted by the condition ps . (Contributed by AV, 31-Jan-2021) (Revised by AV, 29-Oct-2021) Add disjoint variable condition on F , x , y to remove a sethood hypothesis. (Revised by SN, 13-Dec-2024)

Ref Expression
Hypotheses fvmptopab.1 z=Zφψ
fvmptopab.m M=zVxy|xFzyφ
Assertion fvmptopab MZ=xy|xFZyψ

Proof

Step Hyp Ref Expression
1 fvmptopab.1 z=Zφψ
2 fvmptopab.m M=zVxy|xFzyφ
3 fveq2 z=ZFz=FZ
4 3 breqd z=ZxFzyxFZy
5 4 1 anbi12d z=ZxFzyφxFZyψ
6 5 opabbidv z=Zxy|xFzyφ=xy|xFZyψ
7 opabresex2 xy|xFZyψV
8 6 2 7 fvmpt ZVMZ=xy|xFZyψ
9 fvprc ¬ZVMZ=
10 elopabran zxy|xFZyψzFZ
11 10 ssriv xy|xFZyψFZ
12 fvprc ¬ZVFZ=
13 11 12 sseqtrid ¬ZVxy|xFZyψ
14 ss0 xy|xFZyψxy|xFZyψ=
15 13 14 syl ¬ZVxy|xFZyψ=
16 9 15 eqtr4d ¬ZVMZ=xy|xFZyψ
17 8 16 pm2.61i MZ=xy|xFZyψ