Metamath Proof Explorer


Theorem fvnonrel

Description: The function value of any class under a non-relation is empty. (Contributed by RP, 23-Oct-2020)

Ref Expression
Assertion fvnonrel AA-1-1X=

Proof

Step Hyp Ref Expression
1 fvrn0 AA-1-1XranAA-1-1
2 rnnonrel ranAA-1-1=
3 0ss
4 2 3 eqsstri ranAA-1-1
5 ssequn1 ranAA-1-1ranAA-1-1=
6 4 5 mpbi ranAA-1-1=
7 1 6 eleqtri AA-1-1X
8 fvex AA-1-1XV
9 8 elsn AA-1-1XAA-1-1X=
10 7 9 mpbi AA-1-1X=