Metamath Proof Explorer


Theorem fvopab3ig

Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 23-Oct-1999)

Ref Expression
Hypotheses fvopab3ig.1 x=Aφψ
fvopab3ig.2 y=Bψχ
fvopab3ig.3 xC*yφ
fvopab3ig.4 F=xy|xCφ
Assertion fvopab3ig ACBDχFA=B

Proof

Step Hyp Ref Expression
1 fvopab3ig.1 x=Aφψ
2 fvopab3ig.2 y=Bψχ
3 fvopab3ig.3 xC*yφ
4 fvopab3ig.4 F=xy|xCφ
5 eleq1 x=AxCAC
6 5 1 anbi12d x=AxCφACψ
7 2 anbi2d y=BACψACχ
8 6 7 opelopabg ACBDABxy|xCφACχ
9 8 biimpar ACBDACχABxy|xCφ
10 9 exp43 ACBDACχABxy|xCφ
11 10 pm2.43a ACBDχABxy|xCφ
12 11 imp ACBDχABxy|xCφ
13 4 fveq1i FA=xy|xCφA
14 funopab Funxy|xCφx*yxCφ
15 moanimv *yxCφxC*yφ
16 3 15 mpbir *yxCφ
17 14 16 mpgbir Funxy|xCφ
18 funopfv Funxy|xCφABxy|xCφxy|xCφA=B
19 17 18 ax-mp ABxy|xCφxy|xCφA=B
20 13 19 eqtrid ABxy|xCφFA=B
21 12 20 syl6 ACBDχFA=B