Metamath Proof Explorer


Theorem fvpr1

Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010) (Proof shortened by BJ, 26-Sep-2024)

Ref Expression
Hypotheses fvpr1.1 AV
fvpr1.2 CV
Assertion fvpr1 ABACBDA=C

Proof

Step Hyp Ref Expression
1 fvpr1.1 AV
2 fvpr1.2 CV
3 fvpr1g AVCVABACBDA=C
4 1 2 3 mp3an12 ABACBDA=C