Metamath Proof Explorer


Theorem fvprif

Description: The value of the pair function at an element of 2o . (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion fvprif AVBWC2𝑜A1𝑜BC=ifC=AB

Proof

Step Hyp Ref Expression
1 fvpr0o AVA1𝑜B=A
2 1 3ad2ant1 AVBWC2𝑜A1𝑜B=A
3 2 adantr AVBWC2𝑜C=A1𝑜B=A
4 simpr AVBWC2𝑜C=C=
5 4 fveq2d AVBWC2𝑜C=A1𝑜BC=A1𝑜B
6 4 iftrued AVBWC2𝑜C=ifC=AB=A
7 3 5 6 3eqtr4d AVBWC2𝑜C=A1𝑜BC=ifC=AB
8 fvpr1o BWA1𝑜B1𝑜=B
9 8 3ad2ant2 AVBWC2𝑜A1𝑜B1𝑜=B
10 9 adantr AVBWC2𝑜C=1𝑜A1𝑜B1𝑜=B
11 simpr AVBWC2𝑜C=1𝑜C=1𝑜
12 11 fveq2d AVBWC2𝑜C=1𝑜A1𝑜BC=A1𝑜B1𝑜
13 1n0 1𝑜
14 13 neii ¬1𝑜=
15 11 eqeq1d AVBWC2𝑜C=1𝑜C=1𝑜=
16 14 15 mtbiri AVBWC2𝑜C=1𝑜¬C=
17 16 iffalsed AVBWC2𝑜C=1𝑜ifC=AB=B
18 10 12 17 3eqtr4d AVBWC2𝑜C=1𝑜A1𝑜BC=ifC=AB
19 elpri C1𝑜C=C=1𝑜
20 df2o3 2𝑜=1𝑜
21 19 20 eleq2s C2𝑜C=C=1𝑜
22 21 3ad2ant3 AVBWC2𝑜C=C=1𝑜
23 7 18 22 mpjaodan AVBWC2𝑜A1𝑜BC=ifC=AB