Metamath Proof Explorer


Theorem fvsetsid

Description: The value of the structure replacement function for its first argument is its second argument. (Contributed by SO, 12-Jul-2018)

Ref Expression
Assertion fvsetsid FVXWYUFsSetXYX=Y

Proof

Step Hyp Ref Expression
1 setsval FVYUFsSetXY=FVXXY
2 1 3adant2 FVXWYUFsSetXY=FVXXY
3 2 fveq1d FVXWYUFsSetXYX=FVXXYX
4 simp2 FVXWYUXW
5 simp3 FVXWYUYU
6 neldifsn ¬XVX
7 dmres domFVX=VXdomF
8 inss1 VXdomFVX
9 7 8 eqsstri domFVXVX
10 9 sseli XdomFVXXVX
11 6 10 mto ¬XdomFVX
12 11 a1i FVXWYU¬XdomFVX
13 fsnunfv XWYU¬XdomFVXFVXXYX=Y
14 4 5 12 13 syl3anc FVXWYUFVXXYX=Y
15 3 14 eqtrd FVXWYUFsSetXYX=Y