Metamath Proof Explorer


Theorem fvsetsid

Description: The value of the structure replacement function for its first argument is its second argument. (Contributed by SO, 12-Jul-2018)

Ref Expression
Assertion fvsetsid ( ( 𝐹𝑉𝑋𝑊𝑌𝑈 ) → ( ( 𝐹 sSet ⟨ 𝑋 , 𝑌 ⟩ ) ‘ 𝑋 ) = 𝑌 )

Proof

Step Hyp Ref Expression
1 setsval ( ( 𝐹𝑉𝑌𝑈 ) → ( 𝐹 sSet ⟨ 𝑋 , 𝑌 ⟩ ) = ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { ⟨ 𝑋 , 𝑌 ⟩ } ) )
2 1 3adant2 ( ( 𝐹𝑉𝑋𝑊𝑌𝑈 ) → ( 𝐹 sSet ⟨ 𝑋 , 𝑌 ⟩ ) = ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { ⟨ 𝑋 , 𝑌 ⟩ } ) )
3 2 fveq1d ( ( 𝐹𝑉𝑋𝑊𝑌𝑈 ) → ( ( 𝐹 sSet ⟨ 𝑋 , 𝑌 ⟩ ) ‘ 𝑋 ) = ( ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { ⟨ 𝑋 , 𝑌 ⟩ } ) ‘ 𝑋 ) )
4 simp2 ( ( 𝐹𝑉𝑋𝑊𝑌𝑈 ) → 𝑋𝑊 )
5 simp3 ( ( 𝐹𝑉𝑋𝑊𝑌𝑈 ) → 𝑌𝑈 )
6 neldifsn ¬ 𝑋 ∈ ( V ∖ { 𝑋 } )
7 dmres dom ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) = ( ( V ∖ { 𝑋 } ) ∩ dom 𝐹 )
8 inss1 ( ( V ∖ { 𝑋 } ) ∩ dom 𝐹 ) ⊆ ( V ∖ { 𝑋 } )
9 7 8 eqsstri dom ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ⊆ ( V ∖ { 𝑋 } )
10 9 sseli ( 𝑋 ∈ dom ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) → 𝑋 ∈ ( V ∖ { 𝑋 } ) )
11 6 10 mto ¬ 𝑋 ∈ dom ( 𝐹 ↾ ( V ∖ { 𝑋 } ) )
12 11 a1i ( ( 𝐹𝑉𝑋𝑊𝑌𝑈 ) → ¬ 𝑋 ∈ dom ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) )
13 fsnunfv ( ( 𝑋𝑊𝑌𝑈 ∧ ¬ 𝑋 ∈ dom ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ) → ( ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { ⟨ 𝑋 , 𝑌 ⟩ } ) ‘ 𝑋 ) = 𝑌 )
14 4 5 12 13 syl3anc ( ( 𝐹𝑉𝑋𝑊𝑌𝑈 ) → ( ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { ⟨ 𝑋 , 𝑌 ⟩ } ) ‘ 𝑋 ) = 𝑌 )
15 3 14 eqtrd ( ( 𝐹𝑉𝑋𝑊𝑌𝑈 ) → ( ( 𝐹 sSet ⟨ 𝑋 , 𝑌 ⟩ ) ‘ 𝑋 ) = 𝑌 )