Metamath Proof Explorer


Theorem fvtp1

Description: The first value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses fvtp1.1 AV
fvtp1.4 DV
Assertion fvtp1 ABACADBECFA=D

Proof

Step Hyp Ref Expression
1 fvtp1.1 AV
2 fvtp1.4 DV
3 df-tp ADBECF=ADBECF
4 3 fveq1i ADBECFA=ADBECFA
5 necom ACCA
6 fvunsn CAADBECFA=ADBEA
7 5 6 sylbi ACADBECFA=ADBEA
8 1 2 fvpr1 ABADBEA=D
9 7 8 sylan9eqr ABACADBECFA=D
10 4 9 eqtrid ABACADBECFA=D