Metamath Proof Explorer


Theorem fzdif2

Description: Split the last element of a finite set of sequential integers. More generic than fzsuc . (Contributed by Thierry Arnoux, 22-Aug-2020)

Ref Expression
Assertion fzdif2 NMMNN=MN1

Proof

Step Hyp Ref Expression
1 fzspl NMMN=MN1N
2 1 difeq1d NMMNN=MN1NN
3 difun2 MN1NN=MN1N
4 2 3 eqtrdi NMMNN=MN1N
5 eluzelz NMN
6 uzid NNN
7 uznfz NN¬NMN1
8 5 6 7 3syl NM¬NMN1
9 disjsn MN1N=¬NMN1
10 8 9 sylibr NMMN1N=
11 disjdif2 MN1N=MN1N=MN1
12 10 11 syl NMMN1N=MN1
13 4 12 eqtrd NMMNN=MN1