Metamath Proof Explorer


Theorem fzindd

Description: Induction on the integers from M to N inclusive, a deduction version. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses fzindd.1 x=Mψχ
fzindd.2 x=yψθ
fzindd.3 x=y+1ψτ
fzindd.4 x=Aψη
fzindd.5 φχ
fzindd.6 φyMyy<Nθτ
fzindd.7 φM
fzindd.8 φN
fzindd.9 φMN
Assertion fzindd φAMAANη

Proof

Step Hyp Ref Expression
1 fzindd.1 x=Mψχ
2 fzindd.2 x=yψθ
3 fzindd.3 x=y+1ψτ
4 fzindd.4 x=Aψη
5 fzindd.5 φχ
6 fzindd.6 φyMyy<Nθτ
7 fzindd.7 φM
8 fzindd.8 φN
9 fzindd.9 φMN
10 7 8 jca φMN
11 1 imbi2d x=Mφψφχ
12 2 imbi2d x=yφψφθ
13 3 imbi2d x=y+1φψφτ
14 4 imbi2d x=Aφψφη
15 5 a1i MNMNφχ
16 6 3expa φyMyy<Nθτ
17 16 ex φyMyy<Nθτ
18 17 expcom yMyy<Nφθτ
19 18 a2d yMyy<Nφθφτ
20 19 adantl MNyMyy<Nφθφτ
21 11 12 13 14 15 20 fzind MNAMAANφη
22 10 21 sylan φAMAANφη
23 22 imp φAMAANφη
24 23 anabss1 φAMAANη