Metamath Proof Explorer


Theorem fzo0to3tp

Description: A half-open integer range from 0 to 3 is an unordered triple. (Contributed by Alexander van der Vekens, 9-Nov-2017)

Ref Expression
Assertion fzo0to3tp 0..^3=012

Proof

Step Hyp Ref Expression
1 3z 3
2 fzoval 30..^3=031
3 1 2 ax-mp 0..^3=031
4 3m1e2 31=2
5 2cn 2
6 5 addlidi 0+2=2
7 4 6 eqtr4i 31=0+2
8 7 oveq2i 031=00+2
9 0z 0
10 fztp 000+2=00+10+2
11 eqidd 00=0
12 0p1e1 0+1=1
13 12 a1i 00+1=1
14 6 a1i 00+2=2
15 11 13 14 tpeq123d 000+10+2=012
16 10 15 eqtrd 000+2=012
17 9 16 ax-mp 00+2=012
18 3 8 17 3eqtri 0..^3=012